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Abstract  
   
In this article, the vibration of visco-thermoelastic isotropic homogeneous nano-beam has been studied. A general model 
of visco-thermoelasticity theory under simply supported conditions of one relaxation time has been used. The Laplace 
transformation has been applied for the governing equations. The inverse Laplace transformation has been considered by 
using Tzou procedure. When subjected to thermal shock loading and simply supported conditions, the numerical results 
have been validated for a visco-thermoelastic rectangular nano-beam of silicon nitride. Figures of this paper represent 
numerical results to describe the effects of the visco-thermoelastic parameters and the thickness of the nano-beam. The 
beam’s thickness and the visco-thermoelastic parameters have been significant effects on all the studied state-functions. 
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Introduction 
 
The concept of heat conduction has been considered using 

mathematical models for example dual-phase lag (DPL), 

which was suggested by Tzou [1,2]. The heat flux and 

temperature gradient have been recognized by DPL model. 

Several researchers used DPL model in heat transfer 

problems [3], physical systems [4-8]. One of the types of 

heat conduction is the theory of coupled thermoelasticity 

that consists of two differential partial equations: the 

equation of energy conservation and the equation of 

motion, based on Fourier’s law of heat conduction [9-12]. 

Lord and Shulman introduced the relaxation time in case 

of an isotropic body by modifying Fourier’s law of heat 

conduction, such that including the heat flux and its time 

derivative. In other word, non-Fourier’s law of heat 

conduction  replaces to Fourier’s law [13]. In this case, the 

heat equation in the theory of coupled thermoelasticity is 

a hyperbolic equation that detects and removes the 

infinite speeds of propagation [14].   

 Mechanical signal processing, ultrasensitive mass 

detection, scanning probe microscopes, actuators, signal 

processing components and ultrafast sensors etc. are 

applications based on micro and nanoelectromechanical 

beam resonators [15-18]. Nano-beam’s vibration is the 

most important of the micro/ nano beam resonator. 
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Alghamdi [9] used the DPL thermoelasticity theory to 
studied the damping thermoelastic vibration of beam 
resonator with voids. Sharma and Grover [19] investigated 
the transverse thermoelastic vibration of isotropic and 
homogenous micro/nano thin beam resonators with voids. 
But the study of the damping thermoelastic vibration was 
done by Sun and Saka [20] for microplate circular 
resonators. They added factor K = (1 + υ) (1 − 2υ)⁄  to 
formula of thermoelastic damping, so their formula 
becomes different from that of Lifshitz and Roukes [21], 
where 𝜐 is Poisson's ratio.  Several researchers have 
investigated the heat transfer process and the vibration of 
nano-beams [22-26]. The study of the vibration of nano-
beam gold subjected to thermal shock was done by Eman 
and Hamdi [23]. Kidawa [25] used the properties of the 
Green functions to study the effects of internal and 
external damping on beam’s  vibrations caused a moving 
heat source. Boley [24] investigated the affect a thermal 
shock on vibrations of a rectangular nano-beam that was 
simply supported. Manolis and Beskos [26] studied 
vibration of thermoelastic nano-beam’s  dynamic response 
under the effect of thermal loading by using a numerical 
method of analysis. Al-Huniti et al. [22] used a high-power 
moving laser beam to investigated the thermally induced 
displacements and stresses of heated rod and it’s 
dynamical beheviour by using the Laplace transforms 
technique. 

The study of visco-thermoelasticity has become 
important in mechanics. Biot [27,28] discussed the theory 
of visco-thermoelasticity and the principles in 
thermodynamics vibration.  Drozdov [29] derived a thermo 
visco-elasticity model at finite strains. Ezzat and El-



Najat A. Alghamdi and Aishah A. Alosaimi         The Vibration of a Simply Supported Visco-Thermoelastic Nanobeam of Silicon Nitride..  

 

125|Int. J. of Multidisciplinary and Current research, Vol.10 (March/April 2022) 

 

Karmany [30] used a  model of thermo-viscoelasticity for 
isotropic material to studying the effects of volume 
properties of viscoelastic media in thermoelasticity. 
Carcione et al. [31] used a numerical algorithm in an elastic 
material using the Kelvin–Voigt model. Grover [32-34] 
studied vibrations in  visco-thermoelastic micro-beam  
resonators. Grover and Seth [35] used a dual phase lagging 
model to study visco-thermoelastic microbeam 
resonators. 
  
Basic Equations 
  
We will consider a thermally isotropic homogenous 
conducting, Kelvin–Voigt type thermo-viscoelastic solid in 
systems of Cartesian coordinate initially unformed and at 
a uniform temperature 𝑇0. The  governing equations of 
motion and heat conduction in the context of generalized 
(non-Fourier) thermoelasticity for displacement vector 
𝑢(𝑥, 𝑦, 𝑧, 𝑡) = (𝑢, 𝑣, 𝑤) and temperature change 
𝑇(𝑥, 𝑦, 𝑧, 𝑡), in the absence of  heat sources and body 
forces, are given by [34]: 
 
𝜎𝑖𝑗,𝑗 = 𝜌𝑢̈𝑖 , 𝑖, 𝑗 = 𝑥, 𝑦, 𝑧              (1) 

 
𝜎𝑖𝑗 = 𝜆𝛿𝑖𝑗𝑒𝑘𝑘 + 2𝜇𝑒𝑖𝑗 − 𝛽𝛿𝑖𝑗(𝑇 − 𝑇0), 𝑖, 𝑗 = 𝑥, 𝑦, 𝑧      (2) 

 

𝐾𝑇,𝑖𝑖 = (
𝜕

𝜕𝑡
+ 𝜏0

𝜕2

𝜕𝑡2) (𝜌𝐶𝜐𝑇 + 𝛽𝑇0𝛿𝑖𝑗𝑒𝑖𝑗), 𝑖, 𝑗 = 𝑥, 𝑦, 𝑧   (3) 

 

𝑒𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖), 𝑖, 𝑗 = 𝑥, 𝑦, 𝑧           (4) 

 

𝜆 = 𝜆0 (1 + 𝜆1
𝜕

𝜕𝑡
) , 𝜇 = 𝜇0 (1 + 𝜇1

𝜕

𝜕𝑡
) , 𝛽 = (3𝜆 + 2𝜇)𝛼𝑇  

          (5) 
 

Where 𝜌 is the density, 𝛼𝑇 is the coefficient of linear 
thermal expansion, 𝜆1, 𝜇1 are the viscoelastic relaxation 
times, 𝜏0 is the thermal relaxation time, 𝜆0, 𝜇0 Lamè’s 
parameter in usual case, 𝐶𝜐is the specific heat and K is the 
thermal conductivity. 
 

Problem Formulation 
 

We will consider small flexural deflections of an elastic thin 

beam of length ℓ(0 ≤ 𝑥 ≤ ℓ), width 𝑏 (−
𝑏

2
≤ 𝑦 ≤

𝑏

2
) and 

thickness ℎ (−
ℎ

2
≤ 𝑧 ≤

ℎ

2
), for which the x, y and z axes are 

defined along the longitudinal, width and thickness 
directions of the beam, respectively. In equilibrium, the 
beam is unstrained, unstressed, without a damping 
mechanism, and the temperature is T0 everywhere [6]. 

 
 

Fig. 1: Rectangular Nanobeam 

In the present work, the Euler–Bernoulli assumption [32] is 
adopted, so, any plane cross-section, initially 
perpendicular to the axis of the beam remains plane and 
perpendicular to the neutral surface during bending. Thus, 
the displacements are given by 
 

𝑢 = −𝑧
𝜕𝑤(𝑥,𝑡)

𝜕𝑥
, 𝑣 = 0, 𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤(𝑥, 𝑡)       (6) 

 
The flexural moment of cross-section is given by  
 

𝑀(𝑥, 𝑡) = (𝜆 + 2𝜇)𝐼
𝜕2𝑤

𝜕𝑥2 + 𝛽𝑀𝑇           (7) 

 
and 𝑀𝑇 is the thermal moment of the beam which is given 
by: 
 

𝑀𝑇 = 𝑏 ∫ 𝜃𝑧𝑑𝑧
ℎ

2

−
ℎ

2

                (8) 

 

𝐼 =
𝑏ℎ3

12
is the moment of inertia of the cross-section about 

x-axis.  
 
Hence, the thermally differential equation  induced  the 
beam  lateral vibration expressed in the form [32]: 
 

(𝜆 + 2𝜇)𝐼
𝜕4𝑤

𝜕𝑥4 + 𝜌𝐴
𝜕2𝑤

𝜕𝑡2 + (3𝜆 + 2𝜇)𝛼𝑇
𝜕2𝑀𝑇

𝜕𝑥2 = 0      (9) 

 
𝑤(𝑥, 𝑡)is the lateral deflection, 𝐴 = ℎ𝑏is the cross-section 
area, and 𝜃 = (𝑇 − 𝑇0) is the temperature increment of 
the resonator. 
 
The non-Fourier heat conduction equation has the 
following form [32]: 
 
𝜕2𝜃

𝜕𝑥2 +
𝜕2𝜃

𝜕𝑧2 = (
𝜕

𝜕𝑡
+ 𝜏𝑜

𝜕2

𝜕𝑡2) (
𝜌𝐶𝜐

𝑘
𝜃 +

(3𝜆+2𝜇)𝛼𝑇𝑇0

𝑘
𝑒)          (10) 

 

where 𝑒 =
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
is the volumetric strain which 

gives from (6) that: 
 

𝑒 = −𝑧
𝜕2𝑤

𝜕𝑥2                     (11)  

 
From the relation in (5), we have the following: 
 

𝜆 + 2𝜇 = (𝜆0 + 2𝜇0) (1 + 𝛽1
𝜕

𝜕𝑡
) , (3𝜆 + 2𝜇) = (3𝜆0 +

2𝜇0) (1 + 𝛽2
𝜕

𝜕𝑡
)                     (12) 

where 𝛽1 =
(𝜆0𝜆1+2𝜇0𝜇1)

(𝜆0+2𝜇0)
 , 𝛽2 =

(3𝜆0𝜆1+2𝜇0𝜇1)

(3𝜆0+2𝜇0)
 are the 

combination of the viscoelastic relaxation times 
parameters. 
 Because there is no heat flow across the lower and 

upper the beam surfaces, so that 
𝜕𝜃

𝜕𝑧
= 0 at 𝑧 = ±ℎ/2. For 

a very thin beam and assuming the temperature varies in 
terms of a 𝑠𝑖𝑛(𝑝𝑧)function along the thickness direction, 
where 𝑝 = 𝜋/ℎ, gives [36]: 
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𝜃(𝑥, 𝑧, 𝑡) = 𝜗(𝑥, 𝑡) 𝑠𝑖𝑛(𝑝𝑧)                                         (13) 
 
Hence, equations  (8), (9), and (13) gives: 
 

(𝜆0 + 2𝜇0) (1 + 𝛽1
𝜕

𝜕𝑡
)

𝜕4𝑤

𝜕𝑥4 +
12𝜌

ℎ2

𝜕2𝑤

𝜕𝑡2 +
12(3𝜆0+2𝜇0)𝛼𝑇

ℎ3 (1 +

𝛽2
𝜕

𝜕𝑡
)

𝜕2𝜗

𝜕𝑥2 ∫ 𝑧 𝑠𝑖𝑛(𝑝𝑧) 𝑑𝑧
ℎ/2

−ℎ/2
= 0        (14) 

 
and equation (10) gives 
 

(
𝜕2𝜗

𝜕𝑥2 − 𝑝2𝜗) 𝑠𝑖𝑛(𝑝𝑧) = (
𝜕

𝜕𝑡
+ 𝜏𝑜

𝜕2

𝜕𝑡2) (
𝜌𝐶𝜐

𝑘
𝜗 𝑠𝑖𝑛(𝑝𝑧) −

(3𝜆0+2𝜇0)𝛼𝑇𝑇0

𝑘
(1 + 𝛽2

𝜕

𝜕𝑡
) 𝑧

𝜕2𝑤

𝜕𝑥2)               (15) 

 
After doing the integrations, equation (14) takes the form 
 

(𝜆0 + 2𝜇0) (1 + 𝛽1
𝜕

𝜕𝑡
)

𝜕4𝑤

𝜕𝑥4 +
12𝜌

ℎ2

𝜕2𝑤

𝜕𝑡2 +
24(3𝜆0+2𝜇0)𝛼𝑇

ℎ𝜋2 (1 +

𝛽2
𝜕

𝜕𝑡
)

𝜕2𝜗

𝜕𝑥2 = 0             (16) 

 
In equation  (15), we multiply the both sides by z and 

integrating with respect to z from−
ℎ

2
𝑡𝑜

ℎ

2
, then we obtain 

 
𝜕2𝜗

𝜕𝑥2 − 𝑝2𝜗 = (
𝜕

𝜕𝑡
+ 𝜏0

𝜕2

𝜕𝑡2) (𝜀𝜗 −
𝑇0ℎ𝜋2(3𝜆0+2𝜇0)𝛼𝑇

24𝑘
(1 +

𝛽2
𝜕

𝜕𝑡
)

𝜕2𝑤

𝜕𝑥2)              (17) 

 

where 𝜀 =
𝜌𝐶𝜐

𝑘
.  

 
Now, we will use the non-dimensional variables [19]: 
 

(𝑥 ′, 𝑤 ′, ℎ′, ℓ′) = 𝜀𝑐0(𝑥, 𝑤, ℎ, ℓ), (𝑡 ′, 𝜏0
′ , 𝛽1

′ , 𝛽2
′ )

= 𝜀𝑐0
2(𝑡, 𝜏0, 𝛽1, 𝛽2), 𝜎

′ =
𝜎

𝜆0 + 2𝜇0

, 

𝜗 ′ =
𝜗

𝑇0
, 𝑐0

2 =
𝜆0+2𝜇0

𝜌
                  (18) 

 

Then, we have 
 

(1 + 𝛽1
𝜕

𝜕𝑡
)

𝜕4𝑤

𝜕𝑥4 + 𝜀1
𝜕2𝑤

𝜕𝑡2 + 𝜀2 (1 + 𝛽2
𝜕

𝜕𝑡
)

𝜕2𝜗

𝜕𝑥2 = 0   (19) 

 
And 
 
𝜕2𝜗

𝜕𝑥2 − 𝜀3𝜗 = (
𝜕

𝜕𝑡
+ 𝜏𝑜

𝜕2

𝜕𝑡2) (𝜗 − 𝜀4 (1 + 𝛽2
𝜕

𝜕𝑡
)

𝜕2𝑤

𝜕𝑥2)   (20) 

 
 

𝜎𝑥𝑥 = (1 + 𝛽1
𝜕

𝜕𝑡
) 𝑒 − 𝛾 (1 + 𝛽2

𝜕

𝜕𝑡
)𝜗 𝑠𝑖𝑛(𝑝𝑧)          (21) 

where 𝜀1 =
12

ℎ2 , 𝜀2 =
24𝛾

𝜋2ℎ
, 𝜀3 = 𝑝2, 𝜀4 =

𝜋2ℎ(3𝜆0+2𝜇0)𝛼𝑇

24𝑘𝜀
, 𝛾 =

(3𝜆0+2𝜇0)𝛼𝑇𝑇0

(𝜆0+2𝜇0)
. 

(We have dropped the prime for convenience) 
 
Formulation the Problem in the Laplace Transform 
Domain 
 

The Laplace transform for equations  (19) and (20), which 
is defined by the following formula will be applied: 

𝑓̄(𝑠) = ∫ 𝑓(𝑡)𝑒−𝑠𝑡 𝑑𝑡
∞

0
                 (22) 

 
Hence, we obtain the following system of differential 
equations: 
 

(1 + 𝛽1𝑠)
𝜕4𝑤̄

𝜕𝑥4 + 𝜀1𝑠
2𝑤̄ + 𝜀2(1 + 𝛽2𝑠)

𝜕2𝜗̄

𝜕𝑥2 = 0          (23) 

 
And 
 
𝜕2𝜗̄

𝜕𝑥2 − 𝜀3𝜗̄ = (𝑠 + 𝜏𝑜𝑠
2) (𝜗̄ − 𝜀4(1 + 𝛽2𝑠)

𝜕2𝑤̄

𝜕𝑥2)          (24) 

 

𝜎̄𝑥𝑥 = (1 + 𝛽1𝑠)𝑒̄ − 𝛾(1 + 𝛽2𝑠)𝜗̄ 𝑠𝑖𝑛(𝑝𝑧)                (25) 
 

𝑒̄ = −𝑧
𝜕2𝑤̄

𝜕𝑥2                (26) 

 
Among applying the Laplace transform, we used the 
following initial conditions: 
 

𝜗(𝑥, 0) = 𝑤(𝑥, 0) =
𝜕𝜗(𝑥,0)

𝜕𝑡
=

𝜕𝑤(𝑥,0)

𝜕𝑡
= 0      (27) 

 
We can re-write the above system to be in the forms: 
 
(𝐷4 + 𝜀5)𝑤̄ = −𝜀6𝐷

2𝜗̄           (28) 
 
And 
 
(𝐷2 − 𝜀7)𝜗̄ = −𝜀8𝐷

2𝑤̄                 (29) 
 

where𝐷𝑟 =
𝜕𝑟

𝜕𝑥𝑟,𝜀5 =
𝜀1𝑠2

(1+𝛽1𝑠)
, 𝜀6 =

𝜀2(1+𝛽2𝑠)

(1+𝛽1𝑠)
, 𝜀7 = 𝜀3 +

(𝑠 + 𝜏𝑜𝑠
2), 𝜀8 = 𝜀4(𝑠 + 𝜏𝑜𝑠

2)(1 + 𝛽2𝑠)  
 
Eliminating 𝑤̄ between the equations of the above system, 
then, we get 
 
[𝐷6 − 𝐿𝐷4 + 𝑀𝐷2 − 𝑁]𝜗̄ = 0         (30) 
 

In similar, eliminating 𝜗̄ gives: 
 
[𝐷6 − 𝐿𝐷4 + 𝑀𝐷2 − 𝑁]𝑤̄ = 0         (31) 
 
where 𝐿 = 𝜀7 + 𝜀6𝜀8,𝑀 = 𝜀5, 𝑁 = 𝜀5𝜀7. 
 
The solutions of the equations (30) and (31) take the forms: 

𝜗̄(𝑥, 𝑠) = −𝜀8 ∑ 𝑐𝑖𝑘𝑖
2 𝑠𝑖𝑛ℎ(𝑘𝑖(ℓ − 𝑥))3

𝑖=1                  (32) 

 
And 

 
𝑤̄(𝑥, 𝑠) = ∑ 𝑐𝑖(𝑘𝑖

2 − 𝜀7) 𝑠𝑖𝑛ℎ(𝑘𝑖(ℓ − 𝑥))3
𝑖=1                 (33) 

 
where ±𝑘1, ±𝑘2, ±𝑘3 are the roots of the characteristic 

equation. 

 

𝑘6 − 𝐿𝑘4 + 𝑀𝑘2 − 𝑁 = 0            (34) 
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To calculate the constants 𝑐𝑖 , 𝑖 = 1,2,3, we must apply any 

set of boundary conditions, so we consider that the beam 

is thermally shocked and simply supported as following: 

 

𝑤(0, 𝑡) =
𝜕2𝑤(0,𝑡)

𝜕𝑥2 = 0, 𝜗(0, 𝑡) = 𝜗0𝐻(𝑡)            (35) 

 

And 

 

𝑤(ℓ, 𝑡) =
𝜕2𝑤(ℓ,𝑡)

𝜕𝑥2 = 𝜗(ℓ, 𝑡) = 0              (36) 

 

where H(t) is the unit step function and 𝜃0 is constant 

which gives the strength of the thermal shock.  

 

Apply the Laplace transform, we have 

 

𝑤̄(0, 𝑠) =
𝜕2𝑤̄(0,𝑠)

𝜕𝑥2 = 0, 𝜗̄(0, 𝑠) =
𝜗0

𝑠
       (37) 

 

and 

 

𝑤̄(ℓ, 𝑠) =
𝜕2𝑤̄(ℓ,𝑠)

𝜕𝑥2 = 𝜗̄(ℓ, 𝑠) = 0           (38) 

 

Then, we obtain the following system of linear equations: 

 

∑ 𝑐𝑖𝑘𝑖
2 𝑠𝑖𝑛ℎ(𝑘𝑖ℓ)3

𝑖=1 = −
𝜗0

𝑠𝜀8
        (39) 

 

∑ 𝑐𝑖(𝑘𝑖
2 − 𝜀7) 𝑠𝑖𝑛ℎ(𝑘𝑖ℓ)3

𝑖=1 = 0         (40) 
 

And 
 

∑ 𝑐𝑖(𝑘𝑖
2 − 𝜀7)𝑘𝑖

2 𝑠𝑖𝑛ℎ(𝑘𝑖ℓ)3
𝑖=1 = 0        (41) 

 

After solving the above system equations, then, we get the 

solutions in the Laplace transform domain as: 
 

𝜗̄(𝑥, 𝑠) =
𝜗0

𝑠𝜀7

[
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              (43) 
And 
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 00 

                (44) 

The Stress and the Strain-Energy  
 
The stress-strain energy which is generated on the beam is 

given by: 

 

𝑊(𝑥, 𝑧, 𝑡) = ∑
1

2
𝜎𝑖𝑗𝑒𝑖𝑗

3
𝑖,𝑗=1 =

1

2
𝜎𝑥𝑥(𝑥, 𝑧, 𝑡)𝑒(𝑥, 𝑧, 𝑡)   (45) 

 

Hence, we have: 

 

𝑊(𝑥, 𝑧, 𝑡) =
1

2
[𝐿−1(𝜎̄𝑥𝑥(𝑥, 𝑧, 𝑠))][𝐿−1(𝑒̄(𝑥, 𝑧, 𝑠))],  (46) 

 

where  𝐿−1[•]is the inversion of Laplace transform. 

 

Numerical Inversion of the Laplace Transform 

  

We use the Riemann-sum approximation method to 

determine the solutions in the time domain and obtain 

numerical results. In this method, we can invert any 

function in the Laplace domain to the time domain as:  

 

𝑓(𝑡) =
𝑒𝜅𝑡

𝑡
[
1

2
𝑓̄(𝜅) + 𝑅𝑒 ∑ (−1)𝑛𝑓̄ (𝜅 +

𝑖𝑛𝜋

𝑡
)𝑁

𝑛=1 ]          (47) 

 

where Re is the real part and 𝑖is an imaginary number unit. 

For faster convergence, many numerical experiments have 

shown that 𝜅𝑡 ≈ 4.7 Tzou [2]. 

 

Numerical Results and Discussion 

  

we will discuss a numerical result. The physical constants 

of silicon nitride used as the thermoelastic material are set 

to the following values [34]: 
 

 

𝑘 = 43.5𝑊/(𝑚𝐾), 𝛼𝑇 = 2.71 (10)−6𝐾−1, 𝜌 = 3200𝑘𝑔/

𝑚3, 𝑇0 = 293𝐾,  𝐶𝜐 = 630𝐽/(𝑘𝑔𝐾), 𝜆0 = 217 × 109𝑁/

𝑚2, 𝜇0 = 108 × 109𝑁/𝑚2, 𝜏0 = 4.32 × 10−13S, 𝜆1 =

𝜇1 = 6.89 × 10−13𝑠. 
 

 

We will assume that the aspect ratios of the beam as 

ℓ/ℎ = 5 , 𝑏 = ℎ/2 and the range of the beam length is  

(1 − 100) × 10−12𝑚  for the nanoscale beam. The 

original time t and the relaxation time 𝜏0 of order 10−12sec 

and 10−14sec, respectively. 

The figures were set by using the non-dimensional 

variables for nano-beam length ℓ = 1.0, 𝜃0 = 1.0  𝑧 =

ℎ/4and𝑡 = 1.0. 

Figures 2-6 represent the temperature increment, the 

lateral vibration, the deformation, the stress, and the 

stress-strain energy distributions, respectively, for the Biot 

model (the model based on Fourier law of thermoelasticity 

heat conduction) for thermoelastic case and visco-

thermoelastic case. It has been noted that the 
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temperature increment is nearly the same for the two 

cases, while the visco-thermoelastic parameters are 

significant effect on the lateral vibration, the deformation, 

the stress, and the stress-strain energy distributions. The 

peak points of the lateral vibration and the deformation 

decrease in the case of visco-thermoelasticity, while the 

absolute value of the stress increases in the same case. The 

peak point of the stress-strain energy distribution 

increases in the context of visco-thermoelastic model. 

Figures 7-11 represent the temperature increment, the 

lateral vibration, the deformation, the stress, and the 

stress-strain energy distributions, respectively, for the 

Lord-Shulman model (L-S) (the model based on non-

Fourier law of thermoelasticity heat conduction) for the 

thermoelastic case and the visco-thermoelastic case. It has 

been noted that the visco-thermoelastic parameters are 

significant effect on temperature increment, the lateral 

vibration, the deformation, the stress, and the stress-strain 

energy distributions. The peak points of the temperature 

increment, the lateral vibration and the deformation 

decrease in the case of visco-thermoelasticity, while the 

absolute value of the stress increases in the same case. The 

peak point of the stress-strain energy distribution 

increases in the context of visco-thermoelastic model. 

Figures 12-16 represent the temperature increment, 

the lateral vibration, the deformation, the stress, and the 

stress-strain energy distributions, respectively, for the 

Lord-Shulman model (L-S) for the visco-thermoelastic case 

with different values of the beam’s thickness 𝑧 =

(ℎ/4, ℎ/6) to stand on the thickness effect on all the 

studied functions. It has been noted that the visco-

thermoelastic parameters are significant effect on 

temperature increment, the deformation, the stress, and 

the stress-strain energy distributions while its effect on the 

lateral vibration is null. The peak points of the temperature 

increment, the deformation, the stress, and the stress-

strain energy increase in the case of 𝑧 = ℎ/4, while it is 

almost the same for the lateral vibration. 

 
Conclusion 

 
When the visco-thermoelastic beam has been thermally 

shocked and simply supported, the visco-thermoelastic 

parameters have significant effects on the lateral vibration, 

the deformation, the stress, and the stress-strain energy 

distributions and null effect on the temperature increment 

distribution in the context of Fourier law of heat 

conduction. In the context of the non-Fourier law of heat 

conduction, the visco-thermoelastic parameters and the 

thickness of the nano-beam have important effects on all 

the studied state-functions. 

 
 

Fig. 2: The temperature increments distribution for Biot 
model 

 

 
 

Fig. 3: The lateral deflection distribution for Biot model 
 

 
 

 
Fig. 4: The deformation distribution for Biot model 
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Fig. 5: The stress distribution for Biot model 
 

 
 

Fig. 6: The stress-strain energy distribution for Biot model 
 

 
 

Fig. 7: The temperature increments distribution for L-S 
model 

 
 

Fig. 8: The lateral deflection distribution for L-S model 
 

 
 

Fig. 9: The deformation distribution for L-S model 
 

 
 

Fig. 10: The stress distribution for L-S model 
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Fig. 11: The stress-strain energy distribution for L-S model 

 

 
 

Fig. 12: The temperature increments distribution with 
variance thickness h 

 
 

 
 

Fig. 13: The lateral deflection distribution with variance 
thickness h 

 
 

Fig. 14: The deformation distribution with variance 
thickness h 

 

 
 

Fig. 15: The stress distribution with variance thickness h 
 

 
 

Fig. 16: The stress-strain energy distribution with variance 
thickness h 
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