Chaos, Complexity and Synchronization in Dynamical System Using Bond Graph

  • Manoj Kumar Singh Reader, School of Management Sciences Technical Campus, Lucknow, Uttar Pradesh.
  • Bharat Raj Singh Prof. and Director (R and D), School of Manage ment Sciences, Technical Campus Lucknow, Uttar Pradesh, India.
Keywords: Dynamic system model, Bond Graph, FFT, Simulator module, Chaos concept

Abstract

This paper describes a method for approaching an arbitrary parameter with initial outline, slider and simulation model, systematical and quantitative bond graph model of vehicle dynamic system. It illustrates a typical bond graph and object models using the three basic modules of the software. For brevity, only small problems are considered for simulation of vehicle dynamic system model. Bond graph techniques reveal its strength and beauty in developing a clear and simplified model for vehicle dynamic system. Fast Fourier Transform (FFT) generates discrete Fourier transform of a time-varying signal and stores it into a disk file containing discredited numerical values for all the system states, ranging over the entire simulation interval. In this paper, a vehicle dynamic Modeling and Simulation involving three partners viz., Vehicle model, Vehicle parameter and Vehicle simulator, are taken into consideration. This process consists of both modeling and simulating closely associated with each other. Vehicle dynamics is the science that studies the kinematics of wheeled land vehicles with its dimensions and benefits to mechanisms, suspensions and steering mechanisms. The dynamics of computer models of vehicles using Bond graph technique originated by H. M. Paynter, presents a tool for continuous system modeling in a graphical sense, by generalizing the physical phenomenon such as: Mechanical Dynamic System. The role of computerized modeling and simulation in engineering design continues to increase as companies are striving to gain competitive advantages by reducing the time required to move from concept to final product.

Downloads

Download data is not yet available.
Published
2013-06-25