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Abstract:  Monte Carlo Method has been using in various fields of science, technology, 
research and management since a very long time. So far only random numbers have been 
considered for this method and research have been extended only to increase the randomness 
of these numbers. Instead of evaluating the function over the random points in the given 
range of integration by Monte Carlo Method we first divide the range of integration into n 
equal interval, obtain n equispaced points and then evaluate the integral over these points. 
Now we are interested to know that how does the choice of numbers (Random or 
Equispaced) affect the accuracy of one dimensional integral. Hence in this research work we 
are going to evaluate the one dimensional integral by Monte Carlo Method using random and 
equispaced points and will prove that equispaced points play a great role as far as the 
accuracy of one dimensional integral and pattern of decrement of error is concerned. 
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1. INTRODUCTION 
 

Although it may look simple at first sight to give a definition of what a random number [1] is, 
it proves to be quite difficult in practice. A random number is a number generated by a 
process, whose outcome is unpredictable, and which cannot be sub sequentially reliably 
reproduced. This definition works fine provided that one has some kind of a black box 
usually called a random number generator [2] that fulfills this task. However, if one were to 
be given a number, it is simply impossible to verify whether it was produced by a random 
number generator [3] or not. In order to study the randomness of the output of such a 
generator, it is hence absolutely essential to consider sequences of numbers. The Monte Carlo 
method [4] is a method for solving problems using random variables. It is a powerful tool in 
many fields of mathematics, physics and engineering [5]. 

Source of Random Numbers: To prove our claim unbiased we are taking the large sample 
of random numbers from two different sources. 
 Our first source is a computer program (random number generator) and by running the 
same we get the random numbers.We store these numbers as  files of size 1000, 2000, 
3000, 4000, 5000 with the name  
 Int_1_1, Int_2_1,  Int_3_1, Int_1_2, Int_2_2, Int_3_2, Int_1_3, Int_2_3,
 Int_3_3, Int_4_1, Int_4_2, Int_4_3, Int_5_1,  Int_5_2, Int_5_3, 
 
file size (1000, 2000, 3000, 4000, 5000) and the last numeral refers to the no. of integral (i.e. 
1st or 2nd or 3rd) 
Our second source of random numbers is online generators of random numbers. For this three 
sides which are taken under consideration are 
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RANDOM.ORG (http://www.random.org/decimal-fractions) 
The numbers generated by random.org are obtained as fractional values up to four decimal 
places between 0 and 1 and used directly in our work. 

RESEARCH RANDOMIZER 
(http://www.randomizer.org/form.htm) 
The numbers generated by randomizer.org are obtained as integral values of four digits 
between 0 and 9999 and then divided by 10000 to obtain fractional values between 0 and 1 
and then they are used in our work. 

GRAPH PAD SOFTWARE 
(http://www.graphpad.com/quickcalcs/randomn1.cfm) 
The numbers generated by graphpad.com are obtained as integral values of four digits 
between 0 and 9999 and divided by 10000 to obtain fractional values between 0 and 1 then 
they are used in our work. 
Five data files of random numbers from each of the above noted sites are saved as under. 

File Name Site Size

olrr1.dat Research Randomizer 1000
olrr1.dat Research Randomizer 2000
olrr1.dat Research Randomizer 3000
olrr1.dat Research Randomizer 4000
olrr1.dat Research Randomizer 5000

olrorg1.dat Random.Org 1000
olrorg2.dat Random.Org 2000
olrorg3.dat Random.Org 3000
olrorg4.dat Random.Org 4000
olrorg5.dat Random.Org 5000

olgp1.dat Graph Pad 1000
olgp2.dat Graph Pad 2000
olgp3.dat Graph Pad 3000
olgp4.dat Graph Pad 4000
olgp5.dat Graph Pad 5000

Table 1
  

As far as the notation and nomenclature of these files are concerned it should be noted,  
ol stands for ONLINE , gp stands for GRAPH PAD , rorg stands for RANDOM.ORG , rr 
stands for RESEARCH RANDOMIZER and the last numeral n stands for file size multiplied 
by 1000. 
Since it is very cumbersome to present all these numbers and program in this research paper 
therefore these may be seen and accessed from the web address: 

1. http://www.4shared.com/folder/BAytR7eW/data_files.html 
2. http://www.4shared.com/office/1fGAqWsdba/random_vs_equispaced-program 
 All the random numbers in the above noted files are distinct and have no correlation with 
each other. Before using these numbers in the research paper these numbers have gone 
through four methods to test [6] their independence and these methods are Poker Test [7], 
Run Test ([8],[9]), Frequency Test [10] and Frequency Monobit Tes [11]. 

 
2. MONTE CARLO METHOD FOR NUMERICAL INTEGRATION 

Just to embrace a wide range of roblem solving techniques which use random numbers and 
statistics of probability, the term "Monte Carlo Method" [12] is used. The term Monte Carlo 
is being coined after the casino in the principality of Monte Carlo. Any method that uses 
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random numbers to examine some problem is a Monte Carlo Method. The term Monte Carlo 
Method ([13], [14]) was first used by Stanslaw Ulam for simulations in Physics and other 
fields that require solutions for problems that are impossible to solve by traditional analytical 
or numerical methods. It is indeed an artificial sampling method which can be used for 
solving complicated problems in analytic formulation and for simulating purely statistical 
problems. The method is being used more and more in recent years, especially in those cases 
where the number of factors included in the problem is so large that an analytical solution is 
impossible. 
The advantages of the method are, above everything is that even very difficult problems can 
often be treated quite easily and desired modifications can be applied without too much 
trouble. The poor precision is the main disadvantage of the method and as such large number 
of trials is necessary. This drawback is of little importance as the calculations are almost 
exclusively performed on automatic computers. 
  [15] method is concerned, we suppose that the function f(x) is 
bounded by   0 ( )f x c  for a x b  

and we wish to evaluate I
b

a

f x dx  

For it, we consider the following two regions 

          
, : ;0 ( )S x y a x b y f x

            
& x y a x b y c  

i.e. S is the region below the curve of the function ( )f x  is a rectangle that covers S 
completely.If |S| stands for the area S then I = |S| 
The area  is easy to find, which is simply 
                 ( )c b a x y a x b y c  

If by applying any method we are in position to find the proportion 
S

 
Then S

I  

The proportion 
S

 can be estimated using simulation by generating random points uniformly 

distributed  and then counting how many of them are falling in S. If n be the 
total number of random points generated and ns be the number of points in S then the integral 
I can be estimated as 
  

I ( ) sn
c b a

n
 

We can also view the problem of evaluating the integral    I
b

a

f x dx  

 Where ( )f x  is supposed to be a continuous and real valued function on  [ , )a b  by defining 
a second function g(x) as below 

 

1

0            

whena x b
b ag x

otherwise

 

 On account of this definition we follow 1.g x dx  

 Showing that we can consider g(x) to be the probability density function. If we insert this 
function g(x) in the constitution of I, we agree to say 
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 I ( ) ( ) ( ) E{ }.
b

a

b a f x g x dx b a f x  

Thus the integral I is simply the width of the integral multiplied by the expectation of the 
integrand. Now the very first step of Monte Carlo Problem is to set up a simulation to 
approximate the value of E{f(x)} 
This expectation can be evaluated by taking the mean of the functional value at n randomly 
selected points emanating from a sequence  nx  of pseudo random numbers generated by some 
PRN generator [16] which provides values in the interval a x b .Hence I can be 

approximated by 

( )
I ( )  E ( ) ( ).

b n

i

ia

b a
b a f x g x dx b a f x f x

n
 

The error term can be 

approximated by the root mean square deviation  of the expectation which is given by 

  
2 2( ) E ( )f x f x

n
 

Where f x  is the sequence of the functional values and 2E ( )f x is the sequence with same 

size having elements equal to 2E ( )f x  

 
3. INTEGRAL EVALUATION 

In the present work, three types of one dimensional integrals [17] are taken into consideration 
and are evaluated by Monte Carlo method using RANDOM POINTS (online generated) as 
well as EQUISPACED POINTS. 

First Integral (1-D) 

1. The first integral under investigation is 
2

1
2

1

I
( 1

1

1)) (
dx

x x  
Exact value of which is 0.57735 

In order to evaluate our first integral by Monte Carlo Integration ([17],[18],[19]) using both 
the random nodes & equispaced nodes, we developed & used a computer program. 

For the data files INT_1_1.DAT; INT_1_2.DAT; INT_1_3.DAT; INT_1_4.DAT; 
INT_1_5.DAT With their 
value of the integral is given in table 2 
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For the data files Olgp1.DAT; Olgp2.DAT; Olgp3.DAT; Olgp4.DAT; Olgp5.DAT With their 
or in the value of the integral is 

given in table 3 

 

For the data files Olrorg1.DAT; Olrorg2.DAT; Olrorg3.DAT; Olrorg4.DAT; Olrorg5.DAT 
With their file codes (for convenience) as (5, 11, 17, 23, 29) the error in the value of the 
integral is given in table 4 

 

For the data files Olrr1.DAT; Olrr2.DAT; Olrr3.DAT; Olrr4.DAT; Olrr5.DAT With their file 
codes (for convenience) as (4, 10, 16, 22, 28) the error in the value of the integral is given in 
table 5 

 

 The graphical display of error in the values of our first integral corresponding to the 
random nodes from table 2, 3, 4, 5 is shown in graph 1
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 While the display corresponding to equidistant nodes is shown in graph 2 

 

Second Integral (1-D) 

2. The second integral under investigation is 

    
1 3

2 22
0

2
I .

1

x x x
e dx

x  
Exact value of which is 1.71828 

For the evaluation of our second integral, we shall use same program with only a change in 
functional form, limits and the storage of number from data file as per the limits 

For the data files INT_2_1.DAT; INT_2_2.DAT; INT_2_3.DAT; INT_2_4.DAT; 

value of the integral is given in table6 
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For the data files Olgp1.DAT; Olgp2.DAT; Olgp3.DAT; Olgp4.DAT; Olgp5.DAT With their 
fi
in table7

 

 
For the data files Olrorg1.DAT; Olrorg2.DAT; Olrorg3.DAT; Olrorg4.DAT; Olrorg5.DAT 

e error in the value of the 
integral is given in table 8 

 

For the data files Olrr1.DAT; Olrr2.DAT; Olrr3.DAT; Olrr4.DAT; Olrr5.DAT with their file 
codes (for convenience) as (4, 10, 16, 22, 28) the error in the value of the integral is given in 
table 9 

 

 The graphical display of error in the values of our second integral corresponding to the 
random nodes from table 6, 7, 8, 9 is shown in graph 3 
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 While the display corresponding to equidistant nodes is shown in Graph 4 

 
 
Third Integral (1-D) 

3. The third and last integral is 
1

3 2
0

1
I

1 3 2x x
dx

e e
 

Exact value of which is 0.0933494. 

 For the evaluation of our second integral we shall use the same program with only a 
change in functional form, limits and the storage of number from data file as per the limits. 

For the data files INT_3_1.DAT; INT_3_2.DAT; INT_3_3.DAT; INT_3_4.DAT; 
INT_3_5.DAT W 3, 9, 15, 21
value of the integral is given in table 10 
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 For the data files Olgp1.DAT; Olgp2.DAT; Olgp3.DAT; Olgp4.DAT; Olgp5.DAT with 

given in table 11 

 

For the data files Olrorg1.DAT; Olrorg2.DAT; Olrorg3.DAT; Olrorg4.DAT; Olrorg5.DAT 

integral is given in table 12 

 

For the data files Olrr1.DAT; Olrr2.DAT; Olrr3.DAT; Olrr4.DAT; Olrr5.DAT with their file 

table 13 

                                  
 The graphical display of error in the value of our third integral corresponding to random 
nodes from table 10,11,12,13 is shown in graph 5. 
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 While the display corresponding to equidistant nodes is shown in graph 6 

 

4. CONCLUSIONS 

Here we observe that Error in the value of all the single integrals doesn't follow any pattern 
corresponding to different size of random numbers and also seems to be random in nature 
whereas using equispaced nodes the error  follow a pattern and steadily approaches to zero 
[see graph] and true value of integral is almost achieved using 5000 equispaced points. 

 
Hence we can conclude the following points 
 
However random the numbers (True or Pseudo) are used in Monte Carlo integration it is not 
necessary that the set of random numbers which gives the best approximation (minimum 
error) of one integral (single) will also yield the same accuracy in the evaluation of other 
integral whereas if we use equispaced numbers in a given range of integration then we get 
almost smooth curve corresponding to the error in the values of integral having a regular 
decrement. 
 

 It is also not necessary that corresponding to different number of random numbers 
obtained through same source will give the value of integral more and more approximated i.e. 
increase in the random numbers doesn't give the assurance for regular decrement in error 
whereas using equispaced nodes we get a regular decrement in the error of value of integral. 
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