
168

Fuzzy Logic Based Re-Engineered Model
for Maximization of Average Processor

Utilization of Distributed Real-Time System

Avanish Kumar1, Anju Khandelwal2, Urmani Kaushal3

1Professor, Department of Mathematical Sciences and Computer Applications,

BundelkhandUniversity, Jhansi, India
2

Technology, Bareilly, India2
3Assistant Professor, FASC, MITS University, Lakshmangarh Rajasthan, India3

Email: dravanishkumar@yahoo.com, dranjukhandelwal@rediffmail.com,

urmani10kaushal@gmail.com

Abstract: High performance parallel applications are using distributed real time system
[DRTS] as phenomenal platform. DRTS process the parallel applications over multiple
processors of the system. Performance of the system can be amended by efficient & evenly
allocation methodology for par
system. Task allocation is NP-hard or NP-complete problem. Fuzzy logic based and dynamic
load sharing technique based model for the distribution of has
been proposed and deployed in this paper. In the new heuristic suggested in model, the
limitation of memory has been deployed using fuzzy rules and the triangular member
function with its FIS variables has been used. In the proposed model k-mean clustering is
being used and MATLAB 7.11.0 has been used to simulate the proposed model.

Keyword: Task Allocation, Distributed Real Time System, Fuzzy Logic, FIS Variable,
Membership Function, Parallel Application, Cluster, NP-complete, Dynamic Load Sharing,

1. INTRODUCTION

The real-world applications
single processor system. The approach to solve such types of problems is distributed
computing system which can process the parallel application over multiple processors of the
system. In a distributed real time system heterogeneous nodes are connected via some
communication links [1,2]. In a distributed real time system, the utilization of remote
computing resources is crucial. The appropriate task allocation technique which is capable to
utilize the processors in higher degree will increase the performance and the level of
flexibility and modularity. If the model for task allocation in distributed real-time system is
designed and planned efficiently, it may provide economical, efficient and more reliable
execution for parallel applications[3]. In [2,4,5,6], load has been distributed in system with
considering the limitation of the memory whether such number of tasks can fulfill the
memory requirement of the tasks or not.

This may causes the uneven load distribution across the system. This load imbalance occurs
has been observed in the models proposed in [2,5,7].It may be unsafe for the system

169

performance in terms of the mean response time of tasks and processor utilization [8]. The
model proposed and discussed in [2,7,9,10,11,12], focused only in the minimization of
execution and inter-task communication cost rather than considering resource utilization. In
the proposed model in this paper has concentrated on the minimization of execution cost,
inter task communication as well as maximization of processer utilization.

The proposed model is efficient that imitates batter results then the model proposed in [2].
Here in this model, clusters has been formed at first stages on the basis of execution cost and
inter task communication cost and at second stage restricted assignment has been recognized
by using fuzzy logic for the task allocation. The model has followed scalable active approach,
which is improving the performance and processor utilization iteratively of distributed real-
time system. Organization of the paper is as follows. In the second section the problem has
been formulated. In the next section the problem has been stated and it describes the model
and its components in detail. The technique has been described in the same section as well. In
next section the model has been simulated using MATLAB 7.11.0. Results of simulated
experiment are collectively presented in the conclusion section.

2. PROBLEM FORMULATION

The parallel application should complete its execution over a DRTS in lesser cost than over a
standalone system. The parallel applications running over the DRTS is having m number of
tasks which are to be allocated on n number of nodes of the distributed system for execution.
This allocation of task should be done in such a manner that inter task communication can be
reduced. Execution constraints of the tasks must be fulfilled. A processor can hold limited
number of tasks and memory is also the limit. So these constraints had been taken into
consideration in the proposed model, which provide an optimal solution for the assignment of
the set of tasks of programs over the set of processors / nodes (where, m > n)
DRTS[2].

Performance enhancement of the distributed system is the objective of this problem

and it will be achieved by appropriate allocations of tasks over system.

2.1 Data Structures &Definitions Used

TMSV (Task& Memory Status Vector) data structure and TMSV Table proposed in [2]
are being used to solve the problem in this paper. Description of the data structures are as
follows:

2.1.1 TMSV

of TMSV is shown in Table 1.
Processor ID

Total number of modules assigned to the processing node Pl can be calculated as follows:
 (1)

Total memory cost of processing node can be achieved by following cost function
 (2)

 Memory required by xth Module.
 Maximum Memory Limit of Processing Node Pl.

TABLE 1: TMSV STRUCTURE

S.No. Notations Description

170

1. Pl Processor ID
2. Nl Maximum Number of Modules allowed on Processing Node Pl
3. Ml Maximum Memory Limit of Processing Node Pl
4. X Number of Module Assigned to the Processing Node Pl
5. Y Number of Available Module on Processing Node Pl (Nl -x)
6. f(z) Memory Available

2.1.2 TMSV Collection

 collection is the group of TMSV of all the processing nodes in a DRTS shown in
Table 2.

TABLE 2: S COLLECTION

Processor No. of
Tasks

(Maximum)

Memory
Capacity

(Maximum)

Tasks
Assigned

Available
Tasks

Capacity

Memory
Available

P1 N1 M1 Maximum x
module from

m tasks

P2 N2 M2 Maximum x
module from

m tasks

P3
.

.

N3
.

.

M3
.

.

Maximum x
module from

m tasks
.

.

.

.

.

.

Pn Nn Mn Maximum x
module from

m tasks

2.1.3 Notations

T : Set of tasks of a parallel program to be executed.
P : Set of processors in DRTS.
n : Number of processors.
m : Number of tasks formed by parallel application.
k : Number of clusters.
ti : ith task of the given program.
Pl : lth processor in P.
ecil : Incurred execution cost (EC), if ith task is executed on lth processor.
ccij : Incurred inter task communication cost between task ti and tj , if they

are executed on separate processors.
X : An allocation matrix of order m*n, where the entry xil = 1; if ith task

is allocated to lth processor and 0; otherwise
CIM(,) : Cluster Information Matrix.
ECM(,) : Execution Cost Matrix.
ITCCM(,) : Inter Task Communication Cost Matrix.
FRAPM(,) : Fuzzy Restricted Assignment Priority Matrix

171

2.2 Definitions
2.2.1 Execution Cost (EC)

The execution cost ecil of a task ti, running on a processor Pl is the amount of the total
cost needed for the execution of ti on that processor during process execution [5]. If a task is
not executable on a particular processor, the corresponding execution cost is taken to be

2.2.1 Communication Cost (CC)

The communication cost (ccij) incurred due to the inter task communication is the
amount of total cost needed for exchanging data between ti and tj residing at separate
processor during the execution process. If two tasks executed on the same processor then ccij
= 0 [2].
2.3 Assumptions
To allocate the tasks of a parallel program to processors in DRTS, the following assumptions
[2,6,9] have been made:
2.3.1 The processors involved in the DRTS are heterogeneous and do not have any particular
interconnection structure.
2.3.2 The parallel program is assumed to be the collection of m-tasks that are free in general,
which are to be executed on a set of n- processors having different processor attributes.
2.3.3 Once the tasks are allocated to the processors they reside on those processors until the
execution of the program is completed. Whenever a group of tasks is assigned to the
processor, the inter task communication cost (ITCC) between them is zero.
2.3.4 Total number of clusters is equal to total number of processors.
2.3.5 Data points for k-mean clustering will be collection of vectors which represents the
execution cost of the task tm on each processor.
2.3.6 Number of tasks to be allocated is more than the number of processors (m>>n) as in
real life situation.
2.4 Proposed Mathematical Model for Task Allocation

In this section, a task allocation model has been developed to find the optimal system
cost so that system performance could be enhanced. Effective allocation of parallel

Hereafter, in order to allocate the tasks of such program to processors in DRTS, the
information about certain inputs such as execution cost, inter task communication cost. While
obtaining such information is beyond the scope of this paper. It is assumed that the required
information is available before the execution of the program. In proposed model, processor
execution cost and task clustering has been considered for this system. The clustering has
been done at two levels in the model, one at initial stage and the other just before allocation
decision.

2.4.1 Execution Cost (EC)

The task allocation given as: = l. For the task allocation X, the
execution cost ecil represents the execution of task ti on processor Pl and it is used to control
the corresponding processor allocation. Therefore, under task allocation X, the execution of
all the tasks assigned to lth processor can be computed as:

2.4.2 Task Clustering
Evaluation of cluster compactness as the total distance of each point (task vector of n

dimension) of a cluster from the cluster mean which is given by [2], Zki

172

Where the cluster mean is defined as and is the total

number of points allocated to cluster k. The parameter Zki is an indicator variable indicating
the suitability of the ith data point Xi to be a part of the kth cluster.
The total goodness of the clustering will then be based on the sum of the cluster compactness
measures for each of the k clusters. Using the indicator variables Zki, we can define the
overall cluster goodness as:

Here should be found in such a manner that the value of can be minimized.
To group the tasks K-means has been used. It is unsupervised learning algorithms for

clustering. The data set will be clustered done with pre-defined number of clusters. In this
grouping technique k centroids is to be defined, one for each cluster. The centroids must be
positioned in carefully because of different location causes different result. In the next phase
associate each data point to the nearest centroid. Repeat this step for all data sets. Here at this
stage the early grouping is done. Repeat the work of assignment and recalculation of

 Finally, this algorithm aims at
minimizing an objective function.
2.4.3 Fuzzy Logic

Generalized classical logic is conceptualized by fuzzy logic. Modern fuzzy logic was
developed by Lotfi Azdeh in mid-1960s. Initially it was modeled for the problems in which
imprecise data is being used or the rules of inferences are formulated in general way to make
use of diffuse categories [13]. The member function used in fuzzy logic is as follows [14]:

2.4.3.1 Membership Function

Membership Function for a fuzzy set A on the universe of discourse Y is defined as
 [0,1], where each element of Y is mapped to a value between 0 and 1. This value,

called membership value or degree of membership, quantifies the grade of membership of the
element in Y to the fuzzy set A. The triangular function is used to solve the problem in this
paper. It is defined as follows:
Lower limit a, Upper limit b, Value m, where,a < m < b.

 (6)

3. Proposed Task Allocation Technique and Algorithm
3.1 Technique

A distributed system having a set P = {P1, P2, P3 n} of processors and a set
T = {t1, t2, t3 m} m which has to be executed over n processors of the system.
The processing time of each task over every processor is given in Execution Cost Matrix
ECM (,) of order m x n. The communication cost of task is provided in Inter Task
Communication Cost Matrix ITCCM (,) of order m x m.

μA(Y) =

0, y a

, a<y m

0, y b

, m<y

173

Minimization in overall system cost could enhance the performance of the system.
Given m tasks are to be processed over n processors where number of processors are very less
the number of tasks (m>>n). So the tasks are grouped in k clusters. Now k clusters are to be
allocated on n processors. For clustering k-mean clustering algorithm has been used. Here m
vectors of tasks are to be placed in k clusters. In this process the first step is to find k initial
points for each cluster, which is represented by task vector. These points represent initial
clusters called centroids. Assign each task vector to the cluster that has the closest centroid.
When all task vectors have been assigned, recalculate the positions of k centroids. Repeat the
work of assignment and recalculation of centroi
move. This produces a separation of the task vectors into clusters from which the metric to be
minimized is calculated by using equation (4) [2].

Modify the ECM(,) according the k clusters by adding the processing time of those
tasks that occurs in the same cluster. Modify the ITCCM(,) by putting the communication
zero amongst those tasks that are in same cluster.
In distributed system each processor has limited memory capacity. So while allocation of
tasks this constraint should be considered. To implement this constraint fuzzy logic has been
used.

In the process of assigning k clusters to n processors, next level of clustering will be
done on the basis of ecil (execution cost) constraint. If there is any change in the clusters the
ECM (,) and ITCCM (,) should be recalculated accordingly. Once the final assignments are in
hand optimal cost of assignment is to be computed using eq. (3). The objective function to
calculate total system cost is as follows:

Total Cost =EC + CC (7)
3.2 Proposed Algorithm
The structure of algorithm is as follows:
Step-1: Start
Step-2: Read the number of processors in n
Step-3: Read the number of tasks in m
Step-4: Read the number of tasks in the task in l
Read the ECM (,) of the task of order l x n
Step-5: Read number of clusters in k (in this case it equal to number of processors)
Step-6: Read the Inter Task Communication Cost Matrix ITCCM (,) for each task of order l x
l
Step-7: Read the PMCAV of each
Step-8: Apply k-mean clustering algorithm on ECM (,)
Step-9: Cluster information is stored in Cluster Information Matrix CIM (,)
Step-10: Modify the ECM (,) by adding the processing time of tasks in each cluster
Step-11: Apply Fuzzy logic to find restricted assignment priority and store it in FRAPM (,)
Step-12: Modify ECM (,) for restricted assignment provided in FRAPM (,)
Step-13: Modify the ITCCM (,) by putting communication zero amongst those tasks which
are in the same cluster
Step-14: Apply munkres in modified ECM (,)
Step-15: Modify PMCAV Collection according the assignment made in Step-14
Step-16: Calculate Execution Cost, Inter Task Communication Cost
Step-17: Optimal Cost = Execution Cost + Inter Task Communication Cost
Step-18: End

3. IMPLEMENTATION

174

To illustrate the proposed algorithm following data set has been used. It is implemented in
MATLAB. It is assumed that the ITCC Matrices, the Execution Cost Matrices and PMCAV
Collection table are given in units of time. Given a set of twenty tasks {T1,T2,T3,T4,T5,T6,T7
,T8, T9, T10, T11, T12,T13,T14,T15,T16,T17,T18,T19,T20} and a set of five processors {P1, P2, P3, P4,
P5}.Execution Cost Matrix has been given in Table 3 and inter task communication detail has
been provided in Table 4. Memory requirement of all tasks is in the Table 5. The detail of
memory capacity of each node is given in Table 6. Clustering information Matrix is provided
in Table 7. For finding the restricted assignment, set of rules has been formed which is shown
in figure 6. Member function is presented in figure 2. Memory Available, Memory Required
and Assignment Priority FIS variables are shown in figure 3, 4 and 5 respectively. The graph
for assignment priority is shown in figure 7. The restricted assignment priority is shown in
Table 8. Cluster assignment status is shown in Table 9. After final assignment the memory
status is shown in Table 10. Table 11 is showing the final optimized system cost, processor
utilization and average processor utilization.

TABLE 3: EXECUTION COST MATRIX
 P1 P2 P3 P4 P5

T1 10 5 10 5 10
T2 20 5 35 10 5
T3 10 10 10 10 10
T4 15 10 20 15 15
T5 10 15 20 15 30
T6 15 25 15 10 10
T7 30 40 25 20 5
T8 20 5 10 15 10
T9 10 5 5 15 20
T10 5 10 25 20 30
T11 10 25 5 5 5
T12 25 10 5 10 25
T13 5 10 15 25 25
T14 10 15 20 25 30
T15 5 10 10 10 10
T16 5 10 10 20 20
T17 5 10 6 3 2
T18 7 8 10 3 1
T19 6 5 15 10 20
T20 8 10 12 14 16

TABLE 4: INTER TASK COMMUNICATION COST MATRIX

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20

T1 0 1 5 4 6 7 9 9 3 6 0 1 4 3 10 9 8 3 7 7
T2 0 2 0 9 5 1 8 3 6 9 8 10 0 1 6 4 10 9 9
T3 0 4 6 6 5 9 0 0 3 9 10 3 3 2 9 2 4 9
T4 0 3 1 6 7 2 6 1 0 5 8 2 9 9 0 7 10
T5 0 9 12 1 9 10 0 6 15 13 5 10 3 15 15 13
T6 0 11 0 14 0 3 8 14 15 0 10 2 8 1 1
T7 0 8 15 8 14 8 14 2 2 11 4 6 4 5
T8 0 10 1 2 4 6 8 15 8 8 6 1 5
T9 0 5 10 10 9 8 5 3 10 14 3 11
T10 0 10 3 13 9 7 11 15 9 9 4

175

T11 0 8 10 10 3 9 0 4 5 0
T12 0 4 4 0 9 2 10 2 6
T13 0 1 6 6 9 4 4 2
T14 0 0 4 5 3 2 2
T15 0 9 1 15 8 8
T16 0 5 8 11 4
T17 0 8 1 4
T18 0 1 0
T19 0 8
T20 0

TABLE 5: MEMORY REQUIREMENT OF TASKS IN UNITS
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20

4 1 6 3 5 2 4 1 4 5 6 3 2 1 2 3 4 2 3 1

TABLE 6:PMCAV S COLLECTION (BEFORE ALLOCATION)
Processor Memory Capacity

(Maximum)
Memory Available

P1 55 50
P2 44 40
P3 35 35
P4 36 30
P5 10 10

TABLE 7: CLUSTER INFORMATION MATRIX

Cluster Clustered Tasks Restricted Assignment Memory
Required

C - 1 T4 , T8 , T9 ,
T12 , T16 , T19 ,

T20

P5 18

C - 2 T7 - 4
C - 3 T2 - 1
C - 4 T5 , T10 , T13 ,

T14
P5 13

C - 5 T1 , T3 , T6 ,
T11 , T15 , T17 ,

T18

 P5 26

TABLE 8: FUZZY RESTRICTED ASSIGNMENT PRIORITY MATRIX

 P1 P2 P3 P4 P5
C 1 0.6651 0.7077 0.4837 0.5311 0.1632
C 2 0.8293 0.8356 0.8326 0.8318 0.8355
C 3 0.8293 0.8307 0.8307 0.8307 0.8307
C 4 0.8293 0.8356 0.5809 0.6319 0.1601
C 5 0.4944 0.4935 0.2883 0.3279 0.1634

TABLE 9: CLUSTER ASSIGNMENT STATUS ON PROCESSORS

Processor Cluster
Assigned

P1 C 1
P2 C 3

176

P3 C 4
P4 C 5
P5 C 2

TABLE 10: S COLLECTION (AFTER ALLOCATION)

Processor Memory Capacity
(Maximum)

Memory Available

P1 55 32
P2 44 39
P3 35 12
P4 36 4
P5 10 6

TABLE 11: OPTIMAL SYSTEM COST

Processors Tasks
Processor

Load
PU APU

Optimal System
Cost

EC ITCC EC +
ITCC

P1 T4 , T8 , T9 , T12 ,
T16 , T19 , T20

30 0.5455

0.5853 161 51 212
P2 T2 55 1
P3 T5 , T10 , T13 , T14 25 0.4546
P4 T1 , T3 , T6 , T11 , T15

, T17 , T18
46 0.8363

P5 T7 5 0.09

Fig. 1: Average Processor Utilization

177

Fig. 2: Member Function Fig. 3: Memory Available

FIS Variable

 Fig. 4: Memory Required FIS Variable Fig. 5: Assignment Priority FIS Variable

 Fig. 6: Rules Fig. 7: Memory Constraint

5. CONCLUSION

The model proposed in this paper is based on effective two levels clustering and fuzzy logic
based approach for checking memory constraint. The task allocation is done using dynamic
the number of processors. In problem solved in this paper memory constraint has been taken
into consideration memory capacity has
been checked and the decision has been taken by applying fuzzy logic. Restricted
assignments decided by memory availability which is calculated by using fuzzy logic has
been considered at time of the allocation. In the solved problem the Average Processor
Utilization (AUP) has increased by 19.968 % in comparison with the model proposed by
Urmani et al. [2] shown in figure 1.

178

References

[1] Urmani Kaushal and Avanish Kumar, "Performance Intensification of DRTS under

Static Load Sharing Scheme," International Journal of Computer Applications, vol. 71,
no. 16, pp. 55-59, June 2013.

[2] Urmani Kaushal and Avanish Kumar, "Improving the Performance of DRTS by Optimal
Allocation of Multiple Tasks under Dynamic Load Sharing Scheme," International
Journal of Scientific & Engineering Research, vol. 4, no. 6, pp. 1316-1321, June 2013.

[3] A. Abdelmageed Elsadek and B. Earl Wells, "A Heuristic model for task allocation in
heterogeneous distributed computing systems," The International Journal of Computers
and Their Applications, vol. 6, no. 1, pp. 0-35, March 1999.

[4] P.K. Yadav, M.P. Singh, and Kuldeep Sharma, "An Optimal Task Allocation Model for
System Cost Analysis in Hetrogeneous Distributed Computing Systems: A Heuristic
Approach," International Journal of Computer Applications, vol. 28, no. 4, pp. 30-37,
August 2011.

[5] Kapil Govil, "A Smart Algorithm for Dynamic Task Allocation for Distributed
Processing Environment," International Journal of Computer Applications, vol. 28, no.
2, pp. 13-19, 2011.

[6] Kapil Govil and Avanish Kumar, "A Modified and Efficient Algorithm for Static Task
Assignment in Distributed Processing Environment," International Journal of Computer
Applications, vol. 23, no. 8, pp. 1-5, June 2011.

[7] Urmani, Avanish Kumar, and Narendra Kumar Kaushal, "Algorithm for Performance
Improvement of DRTS Under Static Load Sharing Scheme," IUP Journal of Information
Technology, vol. 9, no. 3, pp. 43-52, September 2013.

[8] Abbas Karimi, Faraneh Zarafshan, and Adznan b. Jantan, "A New Fuzzy Approach for
Dynamic Load Balancing Algorithm," International Journal of Computer Science and
Information Security, vol. 6, no. 1, pp. 1-5, 2009.

[9] Urmani Kaushal and Avanish Kumar, "Modified Clustered Approach for Performance
Escalation of Distributed Real-Time System," in ICT and Critical Infrastructure:
Proceedings of the 48th Annual Convention of Computer Society of India- Vol II, Suresh
Chandra Satapathy et al., Eds. Vishakapatnam, India: Springer International Publishing,
2014, ch. 2, pp. 9-16.

[10] V.M. Lo, "Heuristic algorithms for task assighment in distributed system," IEEE Trans.
Comput., vol. 37, no. 11, pp. 1384-1397, 1988.

[11] Bora Ucara, Cevdet Aykanata, Kamer Kayaa, and Murat Ikincib, "Task Assignment in
heterogeneous computing system," J. Parallel Distrib. Comput., vol. 66, pp. 32-46,
2006.

179

[12] D.P. Vidyarthi and A.K. Tripathi, "Maximizing Reliability of Distributed Computing
Systems with Task Allocation using Simple Genetic Algorithm," J. of Systems
Architecture, vol. 47, pp. 549-554, 2001.

[13] Atul Kumar Tiwari, Anunay Tiwari, Cherian Samuel, And Satish Kumar Pandey,
"Flexibility In Assignment Problem Using Fuzzy Numbers With Nonlinear Membership
Functions," International Journal of Industrial Engineering & Technology, vol. 3, no. 2,
pp. 1-10, January 2013.

[14] Sanjay Krishnankutty Alonso. (2013, Feb) eMathTeacher. [Online].
http://www.dma.fi.upm.es/java/fuzzy/fuzzyinf/main_en.htm

