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1. INTRODUCTION 
The concept of Fuzzy sets was initially investigated by Zadeh [7] as a new way to represent 
vagueness in everyday life. Subsequently, it was developed by many authors and used in various 
fields. To use this concept in Topology and Analysis, several researchers have defined Fuzzy 
metric space in various ways. In this paper we deal with the Fuzzy metric space defined by 
Kramosil and Michalek [8] and modified by George and Veeramani [1]. Recently, Grebiec [8] 
has proved fixed-point results for Fuzzy metric space. In the sequel, Singh and Chauhan [3] 
introduced the concept of compatible mappings of Fuzzy metric space and proved the common 
fixed point theorem. Jain and singh[2] proved a fixed point theorem for six self maps in  a fuzzy 
metric space. 
In this paper, a fixed point theorem for six self maps has been established using the concept of 
semi compatibility of pairs of self maps in fuzzy metrics space, which generalizes the result of 
Cho [9]. 
 
For the sake of completeness, we recall some definitions and known results in Fuzzy metric 
space. 
 



19 
 

2. PRELIMINARIES 
Definition 2.1. [10] A binary operation [ ] [ ] [ ]: 0,1 0,1 0,1∗ × → is called a t-norm if [ ]( )0,1 ,∗  is an 

abelian topological monoid with unit 1 such that a b c d∗ ≤ ∗ whenever a c≤ and b d≤ for a, b, c, 
d∈[0, 1]. 
 
Examples of t-norms are a b ab∗ = and { }min ,a b a b∗ = . 

 
Definition 2.2. [10] The 3-tuple (X, M, *) is said to be a Fuzzy metric space if X  is an arbitrary 
set, ∗ is a continuous t-norm and M is a Fuzzy set in [ )2 0,X × ∞ satisfying the following 

conditions: For all , ,x y z X∈ and , 0s t >  
                     
(FM-1)   M (x, y, 0) = 0,  
 
(FM-2)   M (x, y, t) =1 for all t > 0 if and only if x = y, 
 
(FM-3)   M (x, y, t) = M (y, x, t), 
 
(FM-4)   M (x, y, t) * M (y, z, s) ≤  M (x, z, t + s), 
 
(FM-5)   M (x, y, ⋅ ): [0,∞) →  [0, 1] is left continuous, 
 
(FM-6)   lim M (x, y, t) =1. 
               t→∞   
 
Note that M (x, y, t) can be considered as the degree of nearness between x and y with respect to 
t. We identify x = y with M (x, y, t) = 1 for all t > 0. The following example shows that every 
metric space induces a Fuzzy metric space. 
 
Example 2.1. [10] Let (X, d) be a metric space. 

{ } ( ) ( )
 min ,  , ,  for all ,  and 0

,
tDifine a b a b and M x y t x y X t

t d x y
∗ = = ∈ >

+
.  

Then (X, M, *) is a Fuzzy metric space. It is called the Fuzzy metric space induced by d. 
 
Definition 2.3. [10] A sequence { }nx in a Fuzzy metric space (X, M, *) is said to be a Cauchy 

sequence if and only if for each ε > 0, t > 0, there exists 0n N∈  such that   M (Xn, Xm , t) > 1 - ε  
for all n, m  ≥  n0. The sequence {xn} is said to converge to a point x in X if and only if for each 
ε  > 0, t > 0 there exists n0∈N such that  M (xn, x, t) > 1 - ε for all n,m ≥n0. A Fuzzy metric 
space (X, M, *) is said to be complete if every Cauchy sequence in it converges to a point in it. 
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Definition 2.4. [3] Self mappings A and S of a Fuzzy metric space (X, M, *) are said to be 
compatible if and only if M (ASxn, SAxn ,t) →  1 for all t > 0, whenever {xn} is a sequence in X 
such that Sxn, Axn →  p for some p in X as n→∞. 
 
Definition 2.5 [10] Suppose A and S be two maps from a Fuzzy metric space (X,M,*) into itself. 
Then they are said to be semi- compatible if ASxn = Sx, whenever {xn} is a sequence such that 

 It follows that (A, S) is semi- compatible and Ay = Sy 
imply ASy = SAy by taking {xn} = y and  x = Ay = Sy. 
  
Proposition 2.1. [2] In a fuzzy metric space (X, M, *) limit of a sequence is unique. 
 
Lemma 2.1. [8] Let (X, M, *) be a fuzzy metric space. Then for all x, y∈ X, M (x, y, .) is a non-
decreasing function. 
 
Lemma 2.2. [9] Let (X, M, *) be a fuzzy metric space. If there exists k∈ (0, 1) such that for all 
x, y ∈  X, M (x, y, kt)≥  M (x, y, t) ∀ t > 0, then x = y. 
 
Lemma 2.3. [2] Let {xn} be a sequence in a fuzzy metric space (X, M, *). If there exists a 
number k∈(0, 1) such that M (xn+2, xn+1, kt) ≥M (xn+1, xn, t). t > 0 and n∈N. Then {xn} is a 
Cauchy sequence in X. 
 
Lemma 2.4. [4] The only t-norm * satisfying r * r≥  r for all r∈[0, 1] is the minimum t-norm, 
that is a * b = min {a, b} for all a, b∈ [0, 1]. 
 
3. MAIN RESULT  
Theorem 3.1. Let (X, M, *) be a complete fuzzy metric space and let A, B, S, T, P and Q be 
mappings from X into itself such that the following conditions are satisfied: 
(a) P (X)⊂  ST (X), Q(X) ⊂  AB(X); 
(b) AB = BA, ST = TS, PB = BP, QT = TQ; 
(c) Either AB or P is continuous; 
(d) (P, AB) and (Q, ST) pairs are semi compatible;  
(e) There exists q∈  (0, 1) such that for every x, y∈X and t > 0 
M (Px, Qy, qt) ≥  M (ABx, STy, t) * M (Px, ABx, t) * M (Qy, STy,t) * M (Px, STy, t). 
Then A, B, S, T, P and Q have a unique common fixed point in X. 
 
Proof: Let x0 ∈ X. From (a) there exist x1, x2 ∈ X such that Px0 = STx1 and Qx1 = ABx2. 
Inductively, we can construct sequences {xn} and {yn} in X such that   Px2n-2 = STx2n-1 = y 2n-1 
and Qx2n-1 = ABx2n = y2n for n = 1, 2, 3, .... 
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Step 1. Put x = x2n and y = x2n+1 in (e), we get 
M (Px2n, Qx2n+1, qt) ≥  M (ABx2n, STx2n+1, t) * M (Px2n, ABx2n, t) 
                                                              * M (Qx2n+1,STx2n+1, t)*M (Px2n, STx2n+1, t). 
                                 = M (y2n, y2n+1, t) * M (y2n+1, y2n, t) 
                                                              *M (y2n+2, y2n+1, t) * M (y2n+1, y2n+1, t)} 
                                 ≥M (y2n, y2n+1, t) * M (y2n+1, y2n+2, t). 
From lemma 2.1 and 2.2, we have 
M (y2n+1, y2n+2, qt) ≥M (y2n, y2n+1, t). 
Similarly, 
M (y2n+2, y2n+3, qt) ≥  M (y2n+1, y2n+2, t). 
Thus,  
M (yn+1, yn+2, qt) ≥  M (yn, yn+1, t)    for n = 1, 2,... 
M (yn, yn+1, t)       ≥M (yn, yn+1, t/q) 
                            ≥M (yn-2, yn-1, t/q2) 
                                       ... ... ...... 
                            ≥M (y1, y2, t/qn) →1 as n→ ∞ , 
and hence M (yn, yn+1, t) →1 as n → ∞   for any t > 0. For each ε  > 0 and t > 0, we can choose 
n0 ∈ N such that M (yn, yn+1, t) > 1 - ε  for all n > n0. For m, n∈ N, we suppose m≥  n. Then we 
have 
M (yn, ym, t) ≥  M (yn, yn+1, t/m-n) * M (yn+1, yn+2, t/m-n) 
                                                        * ... * M (ym-1, ym, t/m-n) 
                     ≥  (1 - ε ) * (1 - ε ) * ... * (1 - ε ) (m - n) times 
                     ≥  (1 -ε ) and hence {yn} is a Cauchy sequence in X. Since (X, M, *) is complete, 
{yn} converges to some point z ∈X. Also its subsequences converges to the same point z∈X i.e., 
{Qx2n+1}→ z; {STx2n+1}→ z          (1)          
and   {Px2n}→z;{ABx2n}→z.         (2) 
 
Case I. Suppose AB is continuous. 
Since AB is continuous, we have (AB)2x2n →  ABz and ABPx2n →  ABz. As (P, AB) is semi 
compatible pair, then PABx2n→  ABz. 
 
Step 2. Put x = ABx2n and y = x2n+1 in (e), we get 
M (PABx2n, Qx2n+1, qt)  ≥  M (ABABx2n, STx2n+1, t) * M (PABx2n, ABABx2n, t) 

                                                         * M (Qx2n+1, STx2n+1, t) * M (PABx2n, STx2n+1, t). 
Taking n→ ∞ , we get  
M (ABz, z, qt) ≥  M (ABz, z, t) * M (ABz, ABz, t) * M (z, z, t) * M (ABz, z, t) 

                 ≥  M (ABz, z, t) * M (ABz, z, t) i.e. M (ABz, z, qt) ≥  M (ABz, z, t). 
Therefore, by using lemma 2.2, we get ABz = z       (3)                                
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Step 3. Put x = z and y = x2n+1 in (e), we have 
M (Pz, Qx2n+1, qt) ≥M (ABz, STx2n+1, t) * M (Pz, ABz, t) 
                                                                       * M (Qx2n+1, STx2n+1, t) * M (Pz, STx2n+1, t). 
Taking n → ∞and using equation (1), we get 
M (Pz, z, qt) ≥  M (z, z, t) * M (Pz, z, t) * M (z, z, t) * M (Pz, z, t) 
                    ≥M (Pz, z, t) * M (Pz, z, t) i.e. M (Pz, z, qt) ≥  M (Pz, z, t). 
Therefore, by using lemma 2.2, we get Pz = z. Therefore, ABz = Pz = z. 
 
Step 4. Putting x = Bz and y = x2n+1 in condition (e), we get 
M (PBz, Qx2n+1, qt) ≥  M (ABBz, STx2n+1, t) * M (PBz, ABBz, t) 
                                                                   * M (Qx2n+1, STx2n+1, t) * M (PBz, STx2n+1, t). 
As BP = PB, AB = BA, so we have P (Bz) = B (Pz) = Bz and (AB) (Bz) = (BA) (Bz) = B 
(ABz)= Bz. Taking n → ∞  and using (1), we get 
M (Bz, z, qt) ≥  M (Bz, z, t) * M (Bz, Bz, t) * M (z, z, t) * M (Bz, z, t) 
                    ≥M (Bz, z, t) * M (Bz, z, t) i.e. M (Bz, z, qt) ≥  M (Bz, z, t). 
Therefore, by using lemma 2.2, we get Bz = z and also we have ABz = z. Az = z. 
Therefore, Az = Bz = Pz = z          (4)                                
 
Step 5. As P (X) ⊂  ST (X), there exists u ∈ X such that z = Pz = STu. Putting x = x2n and y = u 
in (e), we get 
M (Px2n, Qu, qt) ≥  M (ABx2n, STu, t) * M (Px2n, ABx2n, t)                                                                                      
                                                          * M (Qu, STu, t) * M (Px2n, STu, t). 
Taking n →  ∞  and using (1) and (2), we get 
M (z, Qu, qt) ≥  M (z, z, t) * M (z, z, t) * M (Qu, z, t) * M (z, z, t) 
                     ≥M (Qu, z, t) i.e. M (z, Qu, qt) ≥  M (z, Qu, t). 
Therefore, by using lemma 2.2, we get Qu = z. Hence STu = z = Qu. Since (Q, ST) is semi 
compatible therefore, we have QSTu = STQu. Thus Qz = STz. 
 
Step 6. Putting x = x2n and y = z in (e), we get 
M (Px2n, Qz, qt) ≥  M (ABx2n, STz, t) * M (Px2n, ABx2n, t) 
                                                             * M (Qz, STz, t) * M (Px2n, STz, t). 
Taking n→ ∞  and using (2) and step 5, we get 
M (z, Qz, qt) ≥  M (z, Qz, t) * M (z, z, t) * M (Qz, Qz, t) * M (z, Qz, t) 
                     ≥M (z, Qz, t) * M (z, Qz, t) i.e. M (z, Qz, qt) ≥M (z, Qz, t). 
Therefore, by using lemma 2.2, we get Qz = z. 
 
Step 7. Putting x = x2n and y = Tz in (e), we get 
M (Px2n, QTz, qt) ≥  M (ABx2n, STTz, t) * M (Px2n, ABx2n, t) 
                                                              * M (QTz, STTz, t) * M (Px2n, STTz, t). 
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As QT = TQ and ST = TS, we have QTz = TQz = Tz and ST (Tz) = T (STz) = TQz = Tz. 
Taking n→ ∞ , we get 
M (z, Tz, qt) ≥  M (z, Tz, t) * M (z, z, t) * M (Tz, Tz, t) * M (z, Tz, t) 
                    ≥M (z, Tz, t) * M (z, Tz, t) i.e. M (z, Tz, qt) ≥M (z, Tz, t). 
 
Therefore, by using lemma 2.2, we get Tz = z. Now STz = Tz = z implies Sz = z. 
Hence Sz = Tz = Qz = z          (5)                                
 
Combining (4) and (5), we get Az = Bz = Pz = Qz = Tz = Sz = z. Hence, z is the common fixed 
point of A, B, S, T, P and Q. 
 
Case II. Suppose P is continuous. As P is continuous, P2x2n→  Pz and P (AB)x2n →  Pz. 
As (P, AB) is semi compatible, we have (AB)Px2n→Pz. 
 
Step 8. Putting x = Px2n and y = x2n+1 in condition (e), we have 
M (PPx2n, Qx2n+1, qt) ≥  M (ABPx2n, STx2n+1, t) * M (PPx2n, ABPx2n, t) 
                                                                  * M (Qx2n+1, STx2n+1, t) * M (PPx2n, STx2n+1, t). 
Taking n→ ∞ , we get 
M (Pz, z, qt) ≥  M (Pz, z, t) * M (Pz, Pz, t) * M (z, z, t) * M (Pz, z, t) 
                    ≥M (Pz, z, t) * M (Pz, z, t) i.e. M (Pz, z, qt) ≥  M(Pz, z, t). 
Therefore by using lemma 2.2, we have Pz = z. 
Further, using steps 5, 6, 7, we get Qz = STz = Sz = Tz = z. 
 
Step 9. As Q (X) ⊂  AB (X), there exists w∈  X such that z = Qz = ABw. 
Put x = w and y = x2n+1 in (e), we have 
M (Pw, Qx2n+1, qt) ≥  M (ABw, STx2n+1, t) * M (Pw, ABw, t) 
                                                                       * M (Qx2n+1, STx2n+1, t) * M (Pw, STx2n+1, t). 
Taking n→ ∞ , we get 
M (Pw, z, qt) ≥  M (z, z, t) * M (Pw, z, t) * M (z, z, t) * M (Pw, z, t) 
                     ≥M (Pw, z, t) * M (Pw, z, t) i.e. M (Pw, z, qt) ≥M (Pw, z, t). 
Therefore, by using lemma 2.2, we get Pw = z. Therefore, ABw = Pw = z. As (P, AB) is semi 
compatible, we have Pz = ABz. Also, from step 4, we get Bz = z. Thus,   Az = Bz = Pz = z and 
we see that z is the common fixed point of the six maps in this case also. 
 
Uniqueness: Let u be another common fixed point of A, B, S, T, P and Q. 
 
Then Au = Bu = Pu = Qu = Su = Tu = u. Put x = z and y = u in (e), we get 
M (Pz, Qu, qt) ≥  M (ABz, STu, t) * M (Pz, ABz, t) * M (Qu, STu,.t) * M (Pz, STu, t). 
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Taking n → ∞ , we get 
M (z, u, qt) ≥  M (z, u, t) * M (z, z, t) * M (u, u, t) * M (z, u, t) 
                  ≥M (z, u, t) * M (z, u, t) i.e. M (z, u, qt) ≥  M (z, u, t). 
Therefore by using lemma 2.2, we get z = u. Therefore z is the unique common fixed point of 
self-maps A, B, S, T, P and Q.  
 
 
Remark 3.1. If we take B = T = I then condition (b) of theorem 3.1, is satisfied trivially . 
 
Corollary 3.1. Let (X, M, *) be a complete fuzzy metric space and let A, S, P and Q be 
mappings from X into itself such that the following conditions are satisfied: 
 
(a) P (X) ⊂  S (X), Q (X) ⊂  A (X); 
 
(b) either A or P is continuous; 
 
(c) (P, A) and (Q, S) pairs are semi compatible; 
 
(d) there exists q ∈(0, 1) such that for every x, y ∈  X and t > 0 
 
M (Px, Qy, qt)≥  M (Ax, Sy, t) * M (Px, Ax, t) * M (Qy, Sy, t) * M (Px, Sy, t). Then A,         
S, P and Q have a unique common fixed point in X. 
 
Remark 3.2. In view of remark 3.1, corollary 3.1 is a generalization of the result of Cho [9] in 
the sense that condition of compatibility of the pairs of self-maps has been restricted to semi 
compatibility and only one map of the first pair is needed to be continuous. 
 
4. CONCLUSION 
 In this paper, a fixed point theorem for six self-mappings is presented by using the concept of 
semi compatibility which is the generalized result. 
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