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 Abstract 

We here investigate a relativistic model together with some new exact class of solutions 

for an anisotropic radiating star using Tewari and Charan [1] solution; as a seed solution. 

The interior metric obeyed all the relevant physical and thermodynamic conditions and 

matched with Vaidya exterior metric over the boundary. The model is physically and 

thermodynamically sound as it corresponds to the non-negative expressions for non 

homogeneous fluid density, both the radial and transverse pressures and radiation flux 

density throughout the fluid ball. Initially the interior solutions represent a static 

configuration of perfect fluid which then gradually starts evolving into radiating collapse. 

Consequently we have obtained the expressions of mass energy, physical radius, apparent 

luminosity, surface redshift and surface temperature of collapsing radiating star. 
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1. Introduction 

Gravitational collapse has many fundamental phenomenon applications in relativistic astrophysics where the formation 

of compact objects as white dwarfs, black holes, naked singularities, Supernovae, neutron star, and strange stars are 

usually found. In view of Cosmic Censorship Conjecture of Penrose [2]; nature avoid naked singularities but there are a 

number of counter examples available in the literature where naked singularity has more chances to be formed(for a recent  

review see Joshi and Malafarina [3]; and references therein). The description of the gravitational collapse was first 

proposed by Oppenheimer and Snyder [4]; in which they assumed a spherically symmetric fluid distribution of matter 

and equation of state in the form of dust with Schwarzschild exterior. Taking to account the outgoing radiation from 

collapsing spherical fluid, Vaidya [5]; initiated the problem of solving the relativistic field equations. Later on modified 

equations were proposed by Misner [6]; Lindquist et al. [7]; for an adiabatic distribution of matter. 

It is an established fact that gravitational collapse is highly dissipating energy process (Herrera and Santos [8], Herrera et 

al. [9] Mitra [10] and references therein) which plays a dominant role in the formation and evolution of stars. Santos [11] 

studied the junction conditions of collapsing spherically symmetric shear-free non-adiabatic fluid with radial heat flow 

which was based on relativistic models suggested by Glass [12]. On the similar ground a number of stellar models (de 

Oliveira and Santos [13]; Bonnor et al. [14]; Banerjee et al. [15]; Maharaj and Govender [16]; Debnath et al. [17], Herrera 

et al.[18, 19, 20], Naidu and Govender [21], Tewari [22, 23, 24, 25, 26]; Sarwe and Tikekar [27]; Sharma and Tikekar 

[28]; Ivanov [29]; Govinder and Govender [30]; Maharaj et al. [31]; Pinheiro and Chan [32];  Tewari and Charan [33, 

34]; Virdhadra [35]; Vaidya [36];  Herrera [37, 38],  Bowers and Liang [39];  Ivanov [40, 41, 42]; Tewari, Charan and 

Rani [43]; Pandey and Sharma [44] and also references therein) have been reported with the impact of various factors 

such as shear, in homogeneity, anisotropy, electromagnetic field and various dissipative processes on the evolution. 

Keeping in view of generality of solution due to Tewari and Charan [1]; we present a special solution and its detailed 

study, in order to construct a realistic model of collapsing radiating star together with a table of class of exact solutions, 

which will be fruitful for the further study. The energy momentum tensor corresponding to the fluid distribution filling 

the interior of the collapsing star however has been assume to be anisotropic in general .The interior space-time is matched 

with Vaidya exterior metric [5]; over the boundary, and the final fate of our model is formation of black hole.  
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2.  The field equations and the junction conditions   

We consider a spherically symmetric distribution of fluid undergoing dissipation in the form of heat flow bounded by a 

time-like spherical surface Σ. The interior space-time is described by the metric 

                       𝑑𝑠−
2 = −𝑋2(𝑟, 𝑡)𝑑𝑡2 + 𝑈(𝑟, 𝑡){𝑑𝑟2 + 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜓2)}                                     (1) 

The energy-momentum tensor for the interior matter distribution with radial heat flow is given by  

  𝑇𝜆𝜔 = (𝜖 + 𝑝)𝜂𝜆𝜂𝜔 + 𝑝𝑔𝜆𝜔 + (𝑝𝑟 − 𝑝𝑡)𝜏𝜆𝜏𝜔+𝑞𝜆𝜂𝜔 + 𝑞𝜔𝜂𝜆                                        (2)  

where 𝜖 the energy density of the fluid, 𝑝𝑟 the radial pressure, 𝑝𝑡 the tangential pressure,  𝜂𝜆 is four- velocity and 𝑞𝜆 the 

radial heat flow vector and 𝜏𝜆 is a unit space like four vectors along the radial direction. Assuming commoving 

coordinates, we have 𝜂𝜆 =
1

𝑋
𝛿0

𝜆 .The heat flow vector 𝑞𝜆 is orthogonal to velocity vector so that 𝑞𝜆𝜂𝜆 = 0 and takes the 

form 𝑞𝜆 = 𝑞𝛿1
𝜆
.The exterior space-time is described by Vaidya’s exterior metric [5] which represents an outgoing radial 

flow of radiation. 

             𝑑𝑠+
2 = − (1 −

2𝑀

𝑅
) 𝑑𝑣2 − 2𝑑𝑅𝑑𝑣 + 𝑅2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜓2)                                                   (3)  

where 𝑣 is the retarded time and 𝑀(𝑣) is the exterior Vaidya‘s [5] mass.  

The junction conditions for matching two line elements (1) and (3) continuously across a spherically symmetric time-like 

hyper surface Σ are well known and obtained by Santos [11] 

                                             (𝑟𝑈)Σ = 𝑅Σ(𝑣)                                                                (4)  

                                            (𝑝𝑟)Σ = (𝑞𝑈)Σ                                                                 (5) 

                                    𝑚Σ(𝑟, 𝑡) = 𝑀(𝑣) = {
𝑟3𝑈�̇�2

2𝑋2 − 𝑟2𝑈′ −
𝑟3𝑈′2

2𝑈
}

Σ
                                                       (6)      

where 𝑚Σ is the mass function calculated in the interior at  𝑟 = 𝑟Σ (Chill et al. [45] and Misner and Sharp [46]).  

The surface luminosity and the boundary red-shift 𝑧Σ observed on Σ are  

                                                𝐿Σ =
𝜅

2
{𝑟2𝑈3𝑞}Σ                                                                                               (7)   

                                               𝑧Σ = [1 +
𝑟𝑈′

𝑈
+

𝑟�̇�

𝑋
]

Σ

−1

− 1                                                                             (8)  

The total luminosity for an observer at rest at infinity is  

                                      𝐿∞ = −
𝑑𝑀

𝑑𝑣
=

𝐿Σ

(1 + 𝑧Σ)2
                                                       (9) 

3.  Solution of the field equations 

In order to solve the Non-trivial Einstein’s field equation which, we choose a particular form of the metric coefficients 

given in (1) into function of r and t coordinates as 𝑋(𝑟, 𝑡) = 𝑋0(𝑟)𝑔(𝑡) and 𝑈(𝑟, 𝑡) = 𝑈0(𝑟)𝑓(𝑡). The coupling constant 

in geometrized units is taken as 𝑘 = 8𝜋(𝑖. 𝑒. 𝐺 = 𝑐 = 1) and we get the following expressions for field equations.    

                                                     𝜖 =
𝜖0

𝑓2
+

3�̇�2

𝑋2
0𝑔2𝑓2

                                                       (10)  

                                           (𝑝𝑟)0 =
(𝑝𝑟)0

𝑓2 +
1

𝑋0
2𝑔2 (−

2�̈�

𝑓
−

𝑓2̇

𝑓2)                                                                       (11)   

                                          (𝑝𝑡)0 =
(𝑝𝑡)0

𝑓2 +
1

𝑋0
2𝑔2 (−

2�̈�

𝑓
−

𝑓2̇

𝑓2)                                                                         (12) 
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                                            𝑞 = −
2𝑋0

′�̇�

𝑋0
2𝑈0

2𝑔𝑓3                                                                                        (13)  

where 

                                            𝜖0 = −
1

𝑈0
2 (

2𝑈0
"

𝑈0
−

𝑈0
′2

𝑈0
2 +

4𝑈0
′

𝑟𝑈0
)                                                            (14) 

                                           (𝑝𝑟)0 =
1

𝑈0
2 (

𝑈0
′2

𝑈0
2 +

2𝑈0
′

𝑟𝑈0
+

2𝑋0
′𝑈0

′

𝑋0𝑈0
+

2𝑋0
′

𝑟𝑋0
)                                          (15) 

                                           (𝑝𝑡)0 =
1

𝑈0
2 (

𝑈0
"

𝑈0
−

𝑈0
′2

𝑈0
2 +

𝑈0
′

𝑟𝑈0
+

𝑋0
"

𝑋0
+

𝑋0
′

𝑟𝑋0
)                                          (16) 

Here the primes and dots stand for differentiation with respect to 𝑟 and 𝑡 respectively. 

In the absence of dissipative force the equation (5), (𝑝𝑟)Σ = (𝑞𝑈)Σ, reduces to the condition (𝑝0)Σ = 0 and yields at 𝑟 =

𝑟Σ = 𝑅Σ 

                                                     
2�̈�

𝑓
+

�̇�2

𝑓2 −
2𝑔�̇̇� 

𝑔𝑓
=

 2𝛼𝑔�̇�

𝑓2                                                                  (17)                                                                                                                   

where 

                                                                 𝛼 = (
𝑋0
′

𝑈0
)

Σ
                                                                          (18)                                                                                                                                  

To solve the equation (17), by assuming 𝑔(𝑡) = 𝑓(𝑡) Tewari [26], obtain the following solution   

                                                           �̇� = 2𝛼𝑓 + 𝛾√𝑓                                                                      (19)    

𝑡 =
1

𝛼
ln  ( 1 +

2𝛼

𝛾
√𝑓  )                                                                         (20) 

We observed that the function 𝑓(𝑡) decreases monotonically from the value 𝑓(𝑡) = 1 at 𝑡 = −∞ to 𝑓(𝑡) = 0 at 𝑡 = 0.   

Using the equations (11) and (12), Tewari and Charan [1] obtained the following parametric class of solution 

                                                      𝑋0 = 𝑎2(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)
𝑛

𝑙+1                                            (21 ) 

                                                       𝑈0 = 𝑏2(1 + 𝑏1𝑟2)
1

𝑙+1                                                                 (22) 

                                                            𝛅(𝑟) =
(2𝑛−2)     4𝑎1𝑏1𝑟2

(𝑙+1) (1+𝑎1𝑟2)(1+𝑏1𝑟2)
                                                  (23) 

where 𝑛, 𝑙, 𝑏1,  𝑏2,  𝑎1 and 𝑎2 are constants and  

                                                        𝑛 =
1

2
{(𝑙 + 3) ± (𝑙2 + 10𝑙 + 17)

1

2}                                      (24) 

where 𝑛 is real if 𝑙 ≥ −5 + 2√2 or 𝑙 ≤ −5 − 2√2. 

For different values of 𝑛 or 𝑙 Eqs. (21) and (22) give the variety of the solutions. Since many solutions can be obtained 

with the above related parametric class of solution, so keeping this point in mind we here find some exact solutions and 

listed them in a table and they will be fruitful for further study to construct the various models of radiating and static 

models. 

 

 

 

 



Relativistic Modeling of Gravitationally Collapsing Anisotropic Fluid Ball with Occurrence of Horizon 

4                                                            SRMS Journal of Mathematical Sciences, Vol-4, 2018, pp. 1-8 ISSN: 2394-725X 

 

 

Table1: Parametric class of solutions 

S.N. n l 𝑿𝟎
 𝑼𝟎

 𝜹(𝒓) 

1. 
−

5

2
 −

47

6
 𝑎2(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)

15

41 (1 + 𝑏1𝑟2)−
6

41 168𝑎1𝑏1𝑟2

41(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)
 

2. 
−

7

3
 −

47

6
 𝑎2(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)

14

41 (1 + 𝑏1𝑟2)−
6

41 216𝑎1𝑏1𝑟2

41(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)
 

3. 
−

8

7
 −

124

7
 𝑎2(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)

8

117 (1 + 𝑏1𝑟2)−
7

117 120𝑎1𝑏1𝑟2

117(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)
 

4. 
−

11

3
 −

101

12
 𝑎2(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)

44

89 (1 + 𝑏1𝑟2)−
12

89 448𝑎1𝑏1𝑟2

89(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)
 

5. −13 

−
103

6
 𝑎2(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)

78

97 (1 + 𝑏1𝑟2)−
6

97 672𝑎1𝑏1𝑟2

97(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)
 

6. 1 ± √2 −1 𝑎2(1 + 𝑎1𝑟2) (1 + 𝑏𝑟2)0 0 

7. 1

± √14 

3 

𝑎2(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)
3±√14

4  
(1 + 𝑏1𝑟2)4 2(2 ± √14)𝑎1𝑏𝑟2

(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)
 

8. 
−

7

2
 −

83

10
 𝑎2(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)

35

73 (1 + 𝑏1𝑟2)−
10

73 360𝑎1𝑏1𝑟2

73(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)
 

9. 2 ± √5 (−1 ± √5)

2
 𝑎2(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)

3±√5

2  (1 + 𝑏1𝑟2)−
1±√5

2  16𝑎1𝑏1𝑟2

(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)
 

10. 
−

9

5
 −

83

10
 𝑎2(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)

18

73 (1 + 𝑏1𝑟2)−
10

73 224𝑎1𝑏1𝑟2

73(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)
 

11. 
−

7

6
 −

103

6
 𝑎2(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)

7

97 (1 + 𝑏1𝑟2)−
6

97 104𝑎1𝑏1𝑟2

97(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)
 

12. 
−

10

9
 −

208

9
 𝑎2(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)

10

199 (1 + 𝑏1𝑟2)−
9

199 152𝑎1𝑏1𝑟2

199(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)
 

13. 
−

10

7
 −

83

7
 𝑎2(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)

10

76 (1 + 𝑏1𝑟2)−
7

76 136𝑎1𝑏1𝑟2

76(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)
 

14. 1 ± √5 −7 ± 3√5 

𝑎2(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)
7±3√5

3  (1 + 𝑏1𝑟2)
2±√5

3  8√5(√5 − 2)𝑎1𝑏1𝑟2

3(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)
 

15. 
−

11

5
 −

118

15
 𝑎2(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)

33

103 (1 + 𝑏1𝑟2)−
15

103 384𝑎1𝑏1𝑟2

103(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)
 

16. −1

± √5 −
(7√5 ± 25)

2
 

𝑎2(1

+ 𝑎1𝑟2)(1 + 𝑏1𝑟2)
−15±13√5

31  

(1

+ 𝑏1𝑟2)−
20±7√5

31  

8√5(√5 ± 6)𝑎1𝑏1𝑟2

31(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)
 

17. 
−

12

11
 −

178

11
 𝑎2(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)

132

167 (1 + 𝑏1𝑟2)−
11

167 1144𝑎1𝑏1𝑟2

167(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)
 

18. 2 ± √3 (−3 ± 2√3)

3
 𝑎2(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)

3±2√3

2  (1 + 𝑏1𝑟2)
±

3

2√3 4(3 ± √3)𝑎1𝑏1𝑟2

89(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)
 

19. 
−

1

3
 −

4

3
 𝑎2(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)1 (1 + 𝑏1𝑟2)−3 32𝑎1𝑏1𝑟2

89(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)
 

20. 
−

13

11
 −

178

11
 𝑎2(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)

13

167 (1 + 𝑏1𝑟2)−
11

167 192𝑎1𝑏1𝑟2

167(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)
 

21. 
−

7

4
 −

307

12
 𝑎2(1 + 𝐷1𝑟2)(1 + 𝐶1𝑟2)

28

89 (1 + 𝑏1𝑟2)−
12

89 352𝑎1𝑏1𝑟2

89(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)
 

22. 
−

17

13
 −

307

26
 𝑎2(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)

34

281 (1 + 𝑏1𝑟2)−
12

89 480𝑎1𝑏1𝑟2

281(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)
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4. Physical analysis of the model 

In order to construct the realistic model of collapsing radiating star, we assume 𝑛 = −
4

3
, and from (21) and (22) we 

obtain 

                                                       𝑋0 = 𝑎2(1 + 𝑎1𝑟2)(1 + 𝑏1𝑟2)
4

31                                            (25) 

                                                       𝑈0 = 𝑏2(1 + 𝑏1𝑟2)−
3

31                                                               (26)  

                                                       δ(𝑟) =
56𝑎1𝑏1𝑟2

31(1+𝑎1𝑟2)(1+𝑏1𝑟2)
                                                          (27) 

Using (14)-(16), (25) and (26) we have 

                                                       𝜖0 =
12𝑏1

961𝑏2
2(1+𝑏1𝑟2)

56
31

[93 + 28𝑏1𝑟2]                                       (28)   

                       (𝑝𝑟)0 =
4𝑏1

961𝑏2
2(1+𝑏1𝑟2)

56
31

[(31 + 16𝑏2𝑟2) +
31𝑎1(1+𝑏1𝑟2)

𝑏1(1+𝑎1𝑟2)
(31 + 25𝑏1𝑟2)]         (29)                                  

                      (𝑝𝑡)0 =
4𝑏1

961𝑏2
2(1+𝑏𝑟2)

56
31

[(31 + 16𝑏2𝑟2) +
31𝑎1(1+𝑏1𝑟2)

𝑏1(1+𝑎1𝑟2)
(31 + 39𝑏1𝑟2)]            (30)  

The junction condition{(𝑝𝑟)0}𝛴 = 0 gives  

                                               𝑎1 =
−𝑏1(31+16𝑏1𝑟Σ

2)

31(1+𝑏1𝑟Σ
2)(31+25𝑏1𝑟Σ

2)+𝑏1𝑟Σ
2(31+16𝑏1𝑟Σ

2)
                              (31) 

Keeping in mind the conditions of physically reasonable solution at the centre we have the following suitable choice of 

constants   𝑏1 > 0, 𝑏2 > 0, and 
–𝑏1

 31
< 𝑎1 < 0. 

The total energy inside Σ for the static system is 

                                                     𝑚0 =
6𝑏1𝑏2𝑟Σ

3

961𝑏2
2(1+𝑏1𝑟2)

65
31

[31 + 29𝑏1𝑟Σ
2]                                      (32) 

The explicit expressions for 𝜖,  𝑝𝑟, 𝑝𝑡, 𝑞 and Θ reduces the following 

                                                      𝜖 =
𝜖0

𝑓2 +
12𝛽2(1−√𝑓)

2

𝑓3[𝑎2(1+𝑎1𝑟2)(1+𝑏1𝑟2)
4

31]

2                                            (33) 

                                                      𝑝𝑟  =
(𝑝𝑟)0

𝑓2 +
4𝛽2(1−√𝑓)

𝑓
5
2[𝑎2(1+𝑎1𝑟2)(1+𝑏1𝑟2)

4
31]

2                                    (34) 

                                                      𝑝𝑡 =
(𝑝𝑡)0

𝑓2 +
4𝛽2(1−√𝑓)

𝑓
5
2[𝑎2(1+𝑎1𝑟2)(1+𝑏1𝑟2)

4
31]

2                                      (35) 

                                                       𝑞 =
4𝑟[4𝑏1+𝑎1(31+35𝐶1𝑟2)]

31𝑎2𝑏2
2(1+𝑎1𝑟2)2(1+𝑏1𝑟2)

29
31

 
2𝛽(1−√𝑓)

𝑓
7
2

                              (36) 

The fluid collapse rate is given by 

                                                            𝛩 =
−6𝛽(1−√𝑓)

𝑓
3
2[𝑎2(1+𝑎1𝑟2)(1+𝑏1𝑟2)

4
31]

                                                (37) 

where 

                                               𝛼 = −
2𝑎2𝑟Σ

31𝑏2(1+𝑏𝑟Σ
2)

24
31

[4𝑏1 + 𝑎1(31 + 𝑏1𝑟Σ
2)]                              (38) 

We can see the physical parameters 𝜖, 𝑝𝑟,𝑝𝑡 are finite, positive, monotonically decreasing and their derivatives at any 

instant with respect to radial coordinate are negative for 0 ≤ 𝑟 ≤ 𝑟𝛴. Initially collapse is zero and it becomes infinite at 

the final phase of the configuration.  The total energy entrapped inside Σ is given by 
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                                             𝑀(𝑣) = [
8

961

𝑏2𝑟Σ
5{4𝑏1+𝑎1(31+35𝑏1𝑟Σ

2)
2

}

(1+𝑏1𝑟Σ
2)

65
31(1+𝑎1𝑟Σ

2)2
(1 − √𝑓)

2
+ 𝑚0𝑓]         (39) 

  The luminosity and red shift observed on 𝛴 and the luminosity observed by distant observer are  given by 

                                              𝐿𝛴 =
8

961

𝑟𝛴
4{4𝑏1+𝑎1(31+35𝑏1𝑟Σ

2)}
2

(1+𝑏1𝑟Σ
2)2(1+𝑎1𝑟Σ

2)2

(1−√𝑓)
2

√𝑓
                                         (40)  

                                              𝐿∞ =   
8

961

𝑟𝛴
4{4𝑏1+𝑎1(31+35𝑏1𝑟Σ

2)}
2

(1+𝑏1𝑟Σ
2)2(1+𝑎1𝑟Σ

2)2

(1−√𝑓)
2

√𝑓

1

(1+𝑍𝛴)2                           (41) 

                                       𝑧𝛴 = [
(31+35𝑏1𝑟Σ

2)

31(1+𝑏𝑟Σ
2)

−
4𝑟𝛴

2{4𝑏1+𝑎1(31+35𝑏1𝑟Σ
2)}

(1+𝑏1𝑟Σ
2)(1+𝑎1𝑟Σ

2)

(1−√𝑓)

√𝑓
]

−1

Σ

− 1            (42)  

The expression (41) shows that 𝐿∞ vanishes in the beginning when  𝑓(𝑡) → 1 and at the stage when 𝑧𝛴 → ∞.  

We obtain the black hole formation time as 

                                             √𝑓𝐵𝐻 =
4𝑟Σ

2[4𝑏1+𝑎1(31+35𝑏1𝑟Σ
2)]

4𝑟Σ
2[4𝑏1+𝑎1(31+35𝑏1𝑟Σ

2)]+(31+25𝑏1𝑟Σ
2)(1+𝑎1𝑟Σ

2) 
                  (43) 

                                               𝑡𝐵𝐻  =
1

𝛼
𝑙𝑛 [

(31+25𝑏1𝑟Σ
2)(1+𝑎1𝑟Σ

2)

4𝑟Σ
2[4𝑏1+𝑎1(31+35𝑏1𝑟Σ

2)]+(31+25𝑏1𝑟Σ
2)(1+𝑎1𝑟Σ

2)
]       (44) 

The effective surface temperature observed by external observer can be calculated from the expression Tewari and 

Charan [1] as 

                                          𝑇Σ
4 =

8

961𝜋𝛿𝑏2
2

𝑟Σ
2(31+28𝑏1𝑟Σ

2)
2

(1+𝑏1𝑟Σ
2)

56
31(1+𝑎1𝑟Σ

2)2

(1−√𝑓)

𝑓
5
2

1

(1+𝑍Σ)2                              (45)  

where for the photon δ is given by 

                                                                     δ =
𝜋2𝑘4

15ℎ3                                                                         (46) 

where 𝑘 and ℏ denoting respectively Boltzmann and Plank constants. 

The detailed description of temperature inside the star is given by Tewari and Charan [1], here the specific expressions 

for them are given as 

                     𝑇4 = [
𝑇0(𝑡)

[𝑎2(1+𝑎1𝑟Σ
2)(1+𝑏1𝑟Σ

2)
4

31]

4 −
16𝛼

3𝜑[𝑎2(1+𝑎1𝑟Σ
2)(1+𝑏1𝑟Σ

2)
4

31]

(1−√𝑓)

𝑓
3
2

]                         (47)  

where 

 𝑇0(𝑡) = {
16𝛼

3𝑘𝜑

[𝑎2(1+𝑎1𝑟Σ
2)(1+𝑏1𝑟Σ

2)
4

31]

3

(1−√𝑓)

𝑓
3
2

}

Σ

+ {
2𝛼[𝑎2(1+𝑎1𝑟Σ

2)(1+𝑏𝑟Σ
2)

4
31]

2

(1−√𝑓)

𝜋δrΣ
2𝑓

5
2

}

Σ

1

(1+𝑍Σ)2               (48) 

It follows that the surface temperature of the collapsing star tends to zero at the beginning of the collapse [𝑓 → 1] and 

the stage of formation of black hole[𝑧Σ → ∞]. 

5. Concluding remarks 

We have presented a new radiating star model for collapsing, spherically symmetric, shear-free, dissipative fluid 

distribution with a anisotropy pressure and radiating its energy in the form of radial heat flow corresponding to 𝑛 = −4/3 

of Tewari and Charan [1].The model obeyed all the relevant physical and thermodynamic conditions corresponding to 

non-negative expressions for density, tangential and radial pressures and radiation heat flux throughout the fluid sphere. 

The apparent luminosity as observed by the distant observer at rest at infinity is zero at the distant when collapse begins 

and at the stage when collapsing configuration reaches the horizon of black hole. Applications of our work is not limited 

only in theoretical study but also in observational work such as one can construct various models for compact objects by 

using these solutions. 
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