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 Abstract 
Following is the analytical study on the propagation of undamped thermoconvective 
waves, an electrically conducting viscous fluid is hypothesized which has the property of 
uniform horizontal magnetic field in heating the uniform vertical concentration gradient 
for a solute. It has seen that undamped thermoconvective waves propagation in a 
specific order, whereas the heating of fluid, is based on the solute concentration, this 
decreased vertically or show vertical pattern. If the heating of fluid takes place in 
upward manner the propagation of waves is highly effected, the above aspect proves 
hypothetically and has shown that its laboratory demonstration is also possible. 
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1. Introduction  
Many scientists has worked on the hypothesis of  thermoconvective waves with MHD. The condition ݇ఏ >

= ఏ݇)  ߟ 4.5 × 10ିଶܿ݉ଶିܿ݁ݏଵܽ݊݀ ߟ = 7.6 × 10ିଷܿ݉ଶିܿ݁ݏଵ),does not exist in hydromagnetic stability has been 
studied by ‘Chandrasekhar’ (1961). ‘Luikov and Berkovsky’ (1970) observed that phenomenon of BENARD 
convection does not exist for MHD or the propagation of waves showed decreased manner. The waves having this 
character are known as TCW, which are effected by nature of fluid and gravitational field. The moving property of 
TCW specially in fluid which have the property of electrical condition shows the propagation of the waves uniformly in 
horizontally magnetic field was investigated by ‘Takashima’ (1972). ‘Bhattacharyya and Gupta’ (1985) studied the 
mechanism of propagation of TCW in the binary mixture situation. The propagation of the damped MHD 
thermoconvective  waves   depend on  the  temperature  and   heat the  waves  also  shows  the relationship between 
thermal and magnetic diffusivity (݇ఏ >  represent thermal and diffusivity of the fluid, this situation ߟ where  ݇ఏ and (ߟ
is possible in astrophysical condition. 
The present study is based on a solute with uniform vertical concentration gradient for the study of propagation of 
undamped MHD thermoconvective waves for viscous fluid. The whole study is the indication for a certain condition of 
undamped propagation of TCW (݇ఏ >  .(ߟ

2. Formulation and Solution of the problem 
The concerned equations of undamped MHD thermoconvective waves can be represented in the form as given 

below:  

  div vሬ⃗ = 0, (2.1) 

  div Hሬሬ⃗ = 0, (2.2) 

ߩ   ୢ୴ሬሬ⃗
ୢ୲

 = - grad Q + μୣHሬሬ⃗ .gradHሬሬ⃗  +μ∇ଶvሬ⃗  +ρg,ሬሬ⃗  (2.3) 

         ௗୌ
ሬሬ⃗

ௗ௧
= Hሬሬ⃗ .gradvሬ⃗  + η∇ଶHሬሬ⃗ , (2.4) 

         ௗఏ
ௗ௧

= ݇ఏ ∇ଶθ, (2.5) 

         ௗ஼
ௗ௧

= ݇ఘ∇ଶC. (2.6) 

       Where  

  ௗ
ௗ௧

= డ
డ୲

+ vሬ⃗ . ∇ሬሬ⃗  
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The equation of state  

 (i.e.) ߩ = ଴[1ߩ  − ߠ)ߙ − (଴ߠ − ܥ)′ߙ −  ଴)] (2.7)ܥ
Reduces to  

ߩ                 = ଴ߩ + ൫∇ሬሬ⃗ ൯ఏߩ + ൫∇ሬሬ⃗                                                                                             ൯௣ .         (2.8)ߩ

Here, ൫∇ሬሬ⃗ ൯ఏand൫∇ሬሬ⃗ߩ  ൯௣ are the change in the density variation due to the variation of temperature andߩ
concentration respectively. Fluid velocity, density, magnetic permeability, coefficient of dynamic viscosity magnetic  
field, temperature, concentration of solute and acceleration due to gravitational are denoted by 
vሬ⃗ , ρ, μୣ ,μ, Hሬሬ⃗  θ, C, and gሬ⃗  respectively. As described earlier that the magnetic diffusivity indicated by ߟ .  ’is the fluid ߪ

electrical conductivity in the equation (2.3), the pressure of the fluid indicated by Q where as ఓ೐ு
మ

ଶ
 denotes the magnetic 

pressure. When temperature increamentation takes place the density of the fluid decreased, whereas if the density 
increases, the solute concentration will also be increased. 

If we consider the mass transfer equation as described in equation (2.6), the Fick’s law is used, according to 
which , diffusion flux is proportional to concentration gradient, actually diffusion flux  is the total amount of solute 
which is transported by diffusion through a single unit area with a single unit time, the diffusion flux ଓ ̂ showed 
correlation variance with ∆C and ∆θ . If we consider the heat flux vሬ⃗ , this is also depends on ∆C and ∆θ . 
We have the equation  

  ଓ̂ = ௣݇ߩ− ቂ∇ሬሬ⃗ ܥ + ቀ௞ವ
ఏ
ቁ∇ሬሬ⃗  ቃ.      (2.9)ߠ

         Which indicates the Fick’s law with the addition of mass transfer due to the change in correlation gradient, the 
temperature gradient is also responsible for the mass transfer as described above. This is associated with soret effect and 
denotes the thermal diffusivity in the equation (2.9) ,where the coefficient ݇஽ is the ratio of thermal diffusion. There is 
also the phenomenon of heat transfer with the variation in concentration gradient is highly effected in a binary mixture, 
in addition to heat transfer due to temperature gradient. This another heat transfer due to ∆C is defined as “diffusion-
thermo effect” or ‘Dufour’. In the present paper study soret and Dofour effect are not considered due to neglectivity of 
these laws are important for mixture of the gas (incompressible binary mixture in the studies). The density 
variation൫∇ሬሬ⃗  ൯௣  denotes in the L.H.S. of the equation (2.3). Here is displaced by equation (2.8) and is negligible. Theߩ
equation (2.7) and (2.8) represent the concentration in the basic state, there is the variation vത, ρ, H,ഥ  θ, Q, andC can be 
represented in the following manner when the state is undisturbed. 
 

   vሬ⃗ = 0   Q = Q୆(x),             ρ = ρ୆(x),       (2.10)                                                   

ߠ =  θ଴ − βx,                     C = C଴ − β′x,                 Hሬሬ⃗ = Hሬሬ⃗ ଴ 
Where β and β′ may be either positive or negative. Comparing equations (2.1) to (2.8),we have 

  ௗொതಳ
ௗ௫

+ ρ୆gത = 0,    ρ୆ = ρ଴൫1 + αβx + α′β′x൯.                (2.11)                   

Where the transverse plane waves are considered for propagation along y-axis, the variables are considered as : 

   vሬ⃗ = (νଵ, 0)  Q = Q୆(x) + Qଵ,     ρ = ρ୆(x) + ρଵ,   (2.12)                                                                              

  Hሬሬ⃗ = ൫h, Hሬሬ⃗ ଴൯   ߠ =  θ଴ − βx + θଵ,     C = C଴ − β′x + ϕଵ         (2.13)   

The functions of y and t are variable with perturbation quantities νଵ , Qଵ, ρଵ , h, θଵ, ϕଵ. H ሬሬሬ⃗ and h both arise due to the 
expansion of the undisturbed horizontal magnetic line of forces with the vertical movability of by propagation of waves. 
 Equations (2.1) and (2.2) elaborate the condition of magnetic solenoidel and equation of continuity, these are 
identical with reference to  vത and Hഥ  as shown in equations (2.12) and (2.13). By using equations (2.12) and (2.13) in 
equations (2.3) to (2.6) and taking the help of equations (2.7),(2.8),(2.10) and (2.11),we get the following equations: 

                     ∇ሬሬ⃗ ୴vଵ − gሬ⃗ (αθଵ + α′ϕଵ) − μ౛ୌሬሬ⃗ బ
ρబ

డ௛
డ௬

 =0,     (2.14) 

                  ∇ሬሬ⃗ ηh − Hሬሬ⃗ ଴
பνభ
ப୶

= 0, (2.15)                          



Madan Lal 

3 
 

  ∇ሬሬ⃗ ୩θθଵ − βνଵ = 0,                                   (2.16)                              

 ∇ሬሬ⃗ ϕଵ − β′νଵ = 0,                                    (2.17)                                   

Where 

μ = ߥ
ρబ

 ,                       ∇ሬሬ⃗ ୶ ≡ డ
డ௧
− x డమ

డ௬మ
. 

The equations (2.14) to (2.17) represent the phenomenon of natural convection with the help of equations (2.7) and 
(2.8),we can find the approximation of Oberneck- Boussinesq, when the small oscillation takes place. Here we can 
explain a specific force for a single fluid pressure can be denoted by p ,{ ρ = ρ(θ, p) . An algebraic equation of state is 
connected with ρ, θ and p  can be integrodifferential  equation as below: 

 dߩ = ቀడఘ
డఏ
ቁ
௣
ߠ݀ + ቀడఘ

డ௣
ቁ
ఏ
                                                                                                                  (2.18)      ,݌݀

this equation is the derivative extended part of ߙ = − ଵ
ఘ
ቀడఘ
డఏ
ቁ
௣

ఏߚ ݀݊ܽ  = ଵ
ఘ
ቀడఘ
డ௣
ቁ
ఏ

.Equation for ߩ with density 

distribution ߩ଴ can be solved at equilibrium state as below: 

ߩ   = ଴ൣ1ߩ −  α(ߠ − (଴ߠ + βθ(p − p଴)൧       (2.19)                                                   

if we consider horizontal temperature difference for a gravitational field and is no forced convection p − p଴ = 0, the 
value of p − p଴based on solution for vertical temperature differences, this cannot be shown as priori. The natural 
convection can be shown slow motion with minute rates of deformation, if pressure of all particles can assumed as 
hydrostatic in nature. So we can take p − p଴ ∼ ρgL ,here L is the vertical length ,then the equation (2.19) takes of the 
form  

  ୢୣ୬ୱ୧୲୷ ୴ୟ୰୧ୟ୲୧୭୬ ୢ୳ୣ ୲୭ ୡ୭୫୮୰ୣୱୱ୧ୠ୧୪୧୲୷
ୢୣ୬ୱ୧୲୷ ୴ୟ୰୧ୟ୲୧୭୬ ୢ୳ୣ ୲୭ ୲୦ୣ୰୫ୟ୪ ୣ୶୮ୟ୬ୱ୧୭୬ 

~ βθρ୥୐

α∆θ
                    (2.20) 

Here ∆ߠ = ߠ − θ଴, if L=2m and ∆20~ߠ଴C for  water , the ratio can be 2.5x10ିଷ.Here effect of pressure on density 
variation can be neglected. According to ‘Arpaci’and Larsen’for atmospheric air L=2cm and ∆20~ߠ଴C,the ratio should 
be 23.5x10ିଷ.Here in the effect of compressibility on density change can be ignored or neglected . In equation (2.20) 
the effect of compressibility on density change can be ignored for thick layer (Hሬሬ⃗ ) and temperature difference is small. 
So the equation of state (2.19) can be summarized in the form of equation 
ߩ   = ଴[1ߩ −  α(ߠ −                           ଴)]                                     (2.21)ߠ
The phenomenon of compressibility effect on density change has proved in the above equation. α, the volume expansion 
coefficient having the range of 10ିଷ to10ିସfor most of the fluid ,the variations in the density are 1% at 20଴C for small 
variation in the temperature, here density is constant in terms of natural convection except in the buoyancy force 
଴gሬ⃗ߩ  which is proved by equation (2.21), the Oberbeck-Boussinesq approximation has proved by mathematical, ߠ∆ߙ
justification if the following conditions are governed:  

i) Movement is buoyancy- driven and no forced convection is seen. 
ii) The thickness of layer is not large when natural convection takes place. 
iii) ߠ is small compared with fluid layer. 

From above statement the Oberbeck- Boussinesq approximation has proved in two situations found from above 
statement: 

i) The magnitude of α′in the modified form of equations  
(2.7) and (2.8), is very small (α′ < 0). 

ii) C which is variation in the concentration throughout the fluid layer is minutely compared with Q 
itself. 

The Oberbeck- Boussinesq approximation has proved by buoyancy force gሬ⃗ ଵߠߙ) +  .ଵ)in the equation (2.14)  i.e߶′ߙ
momentum equation. The thickness of the layer in which natural convection takes place is not too large in our opinion 
the length of the tank containing the binary mixture can be compared with height of tank 

ଵߥ) , , ଵߠ ߶ଵ ,ℎ) = (V,ߦ, ߶,  ௜(ఠ௧ି௞௬)                                     (2.22)݁(ܩ
Where V, ߦ,  are constant,߱ is real and wave number is k. Subscription of the equation (2.22) in equations ܩ ݀݊ܽ ߶
(2.14) to (2.17) and elimination of  V, ߦ,  thus we get the dispersion relation in the form of non dimensionless ,ܩ ݀݊ܽ ߶
condition of the equation in the following manner :  
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           ቀܽଵ + ℓభమ

௉
ቁ ቀܽଵ + ℓభమ

ோ೘
ቁ ቂ(ܽଵ + ℓଵ

ଶ) ቀܽଵ + ℓభమ

ோ
ቁ − ଵቃߛ −  ቀܽଵ + ℓభమ

ோ
ቁ ቂߛ ′ ቀܽଵ + ℓభమ

ோ೘
ቁ − ℓଵܯ

ଶ ቀܽଵ + ℓభమ

௉
ቁቃ = 0,      (2.23)                                                                       

Where  

߱ଵ =  ቀ ௩
୥మ
ቁ
భ
య߱  ,              ℓଵ =  ቀ ν

୥మ
ቁ
భ
య ℓ  ,      R =     ν

୩θ 
 , P=     ν

୩ౌ 
 , 

ଵߛ                               =  ቀν
మ

୥
ቁ
భ
య ௠ܴ      ,ߚߙ =  ௩

ఎ
.ଵߛ   ,     = ቀν

మ

୥
ቁ
భ
యߚ′ߙ′   ,  M = ఓ೐ுబమ

ఘబ(ఔ୥)మ/య ,    a1 = i߱ଵ . (2.24) 

If there is no presence of magnetic field (M=0) and there is neither any type of temperature gradient nor any 
concentration of solute gradient (γଵ = γଵ′ =0). Equation (2.23) paired  in four first order equation of ℓଵ

ଶ and explain pure 
viscous diffusion waves (ߥ-waves), pure mass diffusion waves (k୮ −waves), pure thermal diffusion waves (kθ −
waves) and pure magnetic waves (η−waves). This is known very well that amplitude of waves described by a specific 
factor of exp(2ߨ) ≃ 540 times per wave lenth. These type of waves are very strongly damped. In the following 
situation M≠ 0, γଵ ≠ 0, γଵ′ ≠ 0, the pure waves joined to produce four type of mode’s like modified kθ − waves , 
modified k୮ −waves, modified ߥ-waves and modified η−waves .This waves shows possibilities of undamped TCW. 
The value of ℓଵshould be actual for undamped propagation of TCW, here the speed of dimensionless phase shows 
ఠభ
ℓభ

 position. When we solve the imaginary part of equation (2.23) ,we can find the equations (2.25) and (2.26) for ωଵ ≠
0 and ℓଵ ≠ 0 as given below: 

 ߱ଵସ − ቂቄ ଵ
ୖୖౣ

+ ଵ
୔

+ ቀଵ
୮

+ 1ቁቀଵ
ୖ

+ ଵ
ୖౣ
ቁቅ ℓଵ

ସ + Mℓଵ
ଶ − γଵ − γଵ′ቃωଵ

ଶ + ℓభఴ

ୖ୔ୖౣ
+ ୑ℓభల

ୖ୔
− ℓభర

ୖౣ
ቀγభ′
ୖ

+ γభ
୔
ቁ = 0          (2.25)

                                                                            And 

 ߱ଵଶ ቀ
ଵ
ୖౣ

+ ଵ
ୖ

+ ଵ
୔

+ 1ቁ = ℓభర

ୖ୔
ቀ ଵ
ୖౣ

+ 1ቁ+ℓଵ
ଶ ቀଵ

ୖ
+ ଵ

୔
ቁ ቀ ℓభమ

ୖౣ
+ Mቁ − ቂγଵ ቀ

ଵ
ୖౣ

+ ଵ
୔
ቁ + γଵ′ቀ

ଵ
ୖ

+ ଵ
ୖౣ
ቁቃ            (2.26)                                                                             

                                                                                                                                                                                                                                                           
Equation 2.26 can be written as 

 ߱ଵଶ =  Bଵℓଵ
ସ + Bଶℓଵ

ଶ + Bଷ                                                   (2.27)                                                                                                                       
 

Where  Bଷ = −ቈ
γభቀ

భ
౎ౣ

ାభౌቁାγభ′ቀ
భ
౎ା

భ
౎ౣ

ቁ

ቀ భ
౎ౣ

ାభ౎ା
భ
ౌାଵቁ

቉                                                     (2.28) 

        
  In the consequences of equations (2.27)and (2.25) takes the form 

ℓଵ
଼ ൤Bଵ

ଶ − Bଵ ൜
1

RR୫
+

1
P + ൬

1
P + 1൰ ൬

1
R +

1
R୫

൰ +
1

RPR୫
ൠ൨ 

+ℓଵ
଺ ൤2BଵBଶ − BଵM−Bଶ ൜

1
RR୫

+
1
P + ൬

1
P + 1൰ ൬

1
R +

1
R୫

൰ൠ +
M
RP
൨ 

+ℓଵ
ସ ቈ2BଵBଷ + Bଶ

ଶ + Bଵ൫γଵ + γଵ
′ ൯ − Bଷ ൜

1
RR୫

+
1
P + ൬

1
P + 1൰ ൬

1
R +

1
R୫

൰ൠ – MBଶ −
1

R୫
ቆ
γଵ
R +

γଵ′
P
ቇ቉ 

           +ℓଵ
ଶൣ2BଶBଷ + Bଶ൫γଵ + γଵ

′ ൯ − BଷM൧+ Bଷ
ଶ + Bଷ൫γଵ + γଵ

′ ൯ = 0   (2.29)                                                                   
  

Equation (2.29) is a biquadratic equation in ℓଵ
ଶ with real coefficients. When we consider the product of ℓଵ

ଶ, ℓଶ
ଶ, ℓଷ

ଶand ℓସ
ଶ 

assume as four roots as a negative, the equation (2.29) represent at least one positive root. Using the values of  
Bଵ, Bଶand Bଷ from equations(2.26)to (2.28) in equation (2.29), we get 

                               (ℓଵℓଶℓଷℓସ)૛ = େ
ୈ

                                   (2.30)                                               

Where 

 C = 
ିቂγభቀ

భ
౎ౣ

ାభౌቁାγభ
′ ቀభ౎ା

భ
౎ౣ

ቁቃቂγభቀ
భ
౎ାଵቁାγభ

′ ቀభౌାଵቁቃ

ቀ భ
౎ౣ

ାభ౎ା
భ
ౌାଵቁ

మ          (2.31) 
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 D =  

ି

⎣
⎢
⎢
⎢
⎢
⎡୔ቀ

భ
౎ౣ

ାభ౎ቁቀ
భ
౎ౣ

ାଵቁቀభ౎ାଵቁା
మ
౎ౣ

ቀయ౎ା
భ
౎ౣ

ቁାଶାୖቀ భ
౎ౣ

ାభౌቁቀ
భ
౎ౣ

ାଵቁቀభౌାଵቁ

ାୖౣቀ
భ
౎ା

భ
ౌቁቀ

భ
౎ାଵቁቀ

భ
ౌାଵቁ

ାቀభ౎ା
భ
ౌቁ൜଺ା

భ
౎ౌା

భ
౎ౣ

ା భ
౎ౣ
మ ൠାቀ

భ
౎ା

భ
ౌቁ
మ
ା ర
౎ౣ

ቀభౌାଵቁ ⎦
⎥
⎥
⎥
⎥
⎤

ቀ భ
౎ౣ

ାభ౎ା
భ
ౌାଵቁ

మ
ୖ୔ୖౣ

     (2.32)                 

Since R୫ ,R and P all are positive, therefore from  above equation D < 0 
Let us consider  

              γଵ ቀ
ଵ
ୖౣ

+ ଵ
୔
ቁ + γଵ

′ ቀ ଵ
ୖౣ

+ ଵ
ୖ
ቁ < 0.      (2.33)                                                            

            γଵ ቀ
ଵ
ୖ

+ 1ቁ + γଵ
′ ቀଵ

୔
+ 1ቁ > 0.                                                    (2.34)                   

In the above case, equation (2.31) follows that C > 0 and equation (2.30)  shows the product of the four roots of the 
equation (2.29)  is negative. In this way equation (2.29) allow to enter one root ℓଵ

ଶ , which is positive that ℓଵ is real . 
From equation  (2.27), we find ߱ଵଶ > 0 , here ߱ଵ   is real and the values of Bଵ and Bଶ are positive and Bଷ > 0  with 
reference to the equation (2.28) and inequality (2.33). When we consider the inequalities (2.33) and (2.34) the 
undamped TCW can propagate till both ߱ଵ  and ℓଵ are real. The following cases may be considered.           

i. If kθ > k୮ (or R < ܲ)              
The undamped TCW can propagate in the hatched region A of     γଵ − γଵ′  parameter plane (Fig. 1) from 
above situation such a region exists when  γଵ > 0 ܽ݊݀ γଵ′ < 0. 

ii. If  kθ < k୮ (or R > ܲ)  The undamped TCW indicate hatched area B of γଵ − γଵ′  parameter plane (Fig. 
2) from above situation such a zone  exists when  γଵ < 0 ܽ݊݀ γଵ′ > 0. 

iii. If  kθ = k୮ (or R = P)  The undamped TCW indicate unsatisfactory answer, it means undamped TCWcan 
not exist. This have no more physical interest. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
         
 
 
 
 
 
 
 

                                Fig.2: Zone of undamped TCW for ܓી <  ܘܓ

It is very much interesting phenomenon of propagation of MHD thermoconvective waves in presence of magnetic field 
which is parallel to the gravitational direction. Another interesting phenomenon is that thermoconvective waves 
possibilities appear in the binary fluid layer due to heating effect from below or above in the presence of solute, the 
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waves propagation will not be affected  by the magnetic field. During the propagation of transverse waves, fluid 
particles shows movement to upward and downward in a verticle direction, it is also the property of MHD flow that 
there is no electromagnetic force which initiates in the fluid due to the direction of the fluid flow parallel to the 
magnetic field. So we can say that the propagation of TCW has not affected by the magnetic field or electric current 
which is initiated in the flow of propagation. 

3. Discussion 
The inequalities (2.33) and (2.34) implies that the presence of undamped TCW have few physical valuable significance. 
The conditions of inequalities (2.33)and (2.34)and the conditions used in manetic prandtl number R୫ ቀ

ν
η
ቁ do not 

represent the restriction  of kθ and ߟ (Takashima). Above described condition does not depend on the strength of the 
magnetic field (M),which are reverse with the result of ‘Takashima’. The presence of undamped waves based on the 
power of magnetic field. Conditions are satisfactory in the two cases kθ > k୮ and kθ < k୮where γଵand γଵ′ so reserve 
sign α > 0 ܽ݊݀ α′ < 0 in equation (2.24)which shows β and β′ both positive or both negative. We can find very 
interesting result on BENARD convection ,if fluid is heated from below (β > 0) the BENARD convection does not 
appear. In this condition the solute concentration decrease vertically β′ > 0 ,the propagation of undamped TCW shows 
kθ > k୮  γଵand γଵ′ behind in the region of A (Fig.1).The result of kθ < k୮ that undamped TCW can propagate if  the 
layer is heated above β < 0 which provide that solute concentration increases vertically upward β′ < 0  γଵand γଵ′ 
behind in the zone B (Fig.2).if we consider that a small drop of fluid is displaced downward in the new condition of the 
drop at higher temperature with higher concentration of solute shows some variation in the condition of variation in k 
suppose kθ < k୮. The diffusion of mass should be faster than the heat from the drop for the surrounding area, the drop 
become less dominant in solute but it is hotter the surrounding associated region, so it increases again. The downward 
and upward motion is responsible of TCW. In both the cases of k,(i.e.) kθ > k୮and kθ < k୮, relationship between 
potential energy and density appears. This indicates the propagation with viscous and destriction of energy. 
At last, we can say that the inequalities (2.33) and (2.34) do not put any relationship with M, the effect is possible for 
the demonstration of TCW in the laboratory is possible for outer magnetic field. 
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